ÎÊÌâ±³¾°£ºÒÑÖªxÊÇʵÊý£¬ÇóµÄ×îСֵ£®Òª½â¾öÕâ¸öÎÊÌâÐèÏÖÅжϳö0£¼x£¼12£¬¼Ì¶øÁªÏëµ½¹¹ÔìÒԱ߳¤Îª2+3ºÍ12Ϊ±ßµÄ¾ØÐΣ¬ÕÒ³öµÈÓÚµÄÏ߶Σ¬ÔٱȽϺ;ØÐζԽÇÏߵĴóС£®
½â£º¹¹Ôì¾ØÐÎABCD£¬Ê¹AB=5£¬AD=12£®ÔÚABÉϽØÈ¡AM=3£¬×ö¾ØÐÎAMND£®ÉèµãPÊÇMNÉÏÒ»µãMP=x£¬ÔòPN=12-x£¬
£¨1£©ÎÒÃÇ°ÑÉÏÊöÇó×îÖµÎÊÌâµÄ·½·¨½Ð×ö¹¹Í¼·¨£®Çë·ÂÔìÉÏÊö·½·¨ÇóµÄ×îСֵ£®
̽Ë÷´´Ð£º
£¨2£©ÒÑÖªa£¬b£¬c£¬dÊÇÕýʵÊýÇÒa+b+c+d=1£¬ÊÔÔËÓù¹Í¼·¨ÇóµÄ×îСֵ£®

¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¸ù¾Ý¹´¹É¶¨Àí£¬ºÍ±íʾ¾ØÐεĶԽÇÏß³¤£¬¼´¿É¹¹Ôì¾ØÐÎABCD£¬Ê¹AB=6£¬AD=8£®ÔÚABÉϽØÈ¡AM=5£¬×÷¾ØÐÎAMND£®ÉèµãPÊÇMNÉÏÒ»µãMP=x£¬ÔòPN=8-x£¬ÀûÓÃÁ½µãÖ®¼äÏ߶Î×î¶Ì¼´¿ÉÖ¤µÃ£»
£¨2£©¸ù¾ÝÒÑÖª¿ÉÒÔ¹¹ÔìÒ»¸ö±ß³¤·Ö±ðÊÇa+b+c+dµÄÕý·½ÐΣ¬¼´¿ÉÀûÓÃÁ½µãÖ®¼äÏ߶Î×î¶Ì¼´¿ÉÇó½â£®
½â´ð£º½â£º£¨1£©¹¹Ôì¾ØÐÎABCD£¬Ê¹AB=6£¬AD=8£®
ÔÚABÉϽØÈ¡AM=5£¬×÷¾ØÐÎAMND£®
ÉèµãPÊÇMNÉÏÒ»µãMP=x£¬ÔòPN=8-x£¬
PB=£¬
PD=
BD==10
¡ßPB+PD¡ÝBD=10
¡àyµÄ×îСֵÊÇ10£»

£¨2£©¹¹ÔìͼÐΣ¬Ê¹BE=£¬EF=£¬FG=£¬DG=£¬
ÔòBE+EF+FG+DG=µÄ×îСֵµÈÓÚBD====£®

µãÆÀ£º±¾Ì⿼²éÁËÁ½µãÖ®¼äÏ߶Î×î¶Ì£¬ÕýÈ·Àí½âÌâÒâÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

24¡¢ÔĶÁ²¢½â¾öÎÊÌ⣮
¶ÔÓÚÐÎÈçx2+2ax+a2ÕâÑùµÄ¶þ´ÎÈýÏîʽ£¬¿ÉÒÔÓù«Ê½·¨½«Ëü·Ö½â³É£¨x+a£©2µÄÐÎʽ£®µ«¶ÔÓÚ¶þ´ÎÈýÏîʽx2+2ax-3a2£¬¾Í²»ÄÜÖ±½ÓÔËÓù«Ê½ÁË£®´Ëʱ£¬ÎÒÃÇ¿ÉÒÔÔÚ¶þ´ÎÈýÏîʽx2+2ax-3a2ÖÐÏȼÓÉÏÒ»Ïîa2£¬Ê¹ËüÓëx2+2axµÄºÍ³ÉΪһ¸öÍêȫƽ·½Ê½£¬ÔÙ¼õÈ¥a2£¬Õû¸öʽ×ÓµÄÖµ²»±ä£¬ÓÚÊÇÓУº
x2+2ax-3a2=£¨x2+2ax+a2£©-a2-3a2=£¨x+a£©2-£¨2a£©2=£¨x+3a£©£¨x-a£©£®
ÏñÕâÑù£¬ÏÈÌí-Êʵ±ÏʹʽÖгöÏÖÍêȫƽ·½Ê½£¬ÔÙ¼õÈ¥Õâ¸öÏʹÕû¸öʽ×ÓµÄÖµ²»±äµÄ·½·¨³ÆΪ¡°Åä·½·¨¡±£®
£¨1£©ÀûÓá°Åä·½·¨¡±·Ö½âÒòʽ£ºa2-6a+8£®
£¨2£©Èôa+b=5£¬ab=6£¬Ç󣺢Ùa2+b2£»¢Úa4+b4µÄÖµ£®
£¨3£©ÒÑÖªxÊÇʵÊý£¬ÊԱȽÏx2-4x+5Óë-x2+4x-4µÄ´óС£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÎÊÌâ±³¾°£ºÒÑÖªxÊÇʵÊý£¬Çóy=
x2+4
+
(12-x)2+9
µÄ×îСֵ£®Òª½â¾öÕâ¸öÎÊÌâÐèÏÖÅжϳö0£¼x£¼12£¬¼Ì¶øÁªÏëµ½¹¹ÔìÒԱ߳¤Îª2+3ºÍ12Ϊ±ßµÄ¾ØÐΣ¬ÕÒ³öµÈÓÚ
x2+22
ºÍ
(12-x)2+32
µÄÏ߶Σ¬ÔٱȽÏ
x2+22
ºÍ
(12-x)2+32
ºÍ¾ØÐζԽÇÏߵĴóС£®
½â£º¹¹Ôì¾ØÐÎABCD£¬Ê¹AB=5£¬AD=12£®ÔÚABÉϽØÈ¡AM=3£¬×ö¾ØÐÎAMND£®ÉèµãPÊÇMNÉÏÒ»µãMP=x£¬ÔòPN=12-x£¬
PB=
x2+22
PD=
(12-x)2+32
BD=
122+52
=13
¡ßPB+PD¡ÝBD=13
¡àyµÄ×îСֵÊÇ13.

£¨1£©ÎÒÃÇ°ÑÉÏÊöÇó×îÖµÎÊÌâµÄ·½·¨½Ð×ö¹¹Í¼·¨£®Çë·ÂÔìÉÏÊö·½·¨Çóy=
1+x2
+
25+(8-x)2
µÄ×îСֵ£®
̽Ë÷´´Ð£º
£¨2£©ÒÑÖªa£¬b£¬c£¬dÊÇÕýʵÊýÇÒa+b+c+d=1£¬ÊÔÔËÓù¹Í¼·¨Çó
a2+b2
+
b2+c2
+
c2+d2
+
d2+a2
µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÔĶÁ²¢½â¾öÎÊÌ⣮
¶ÔÓÚÐÎÈçx2+2ax+a2ÕâÑùµÄ¶þ´ÎÈýÏîʽ£¬¿ÉÒÔÓù«Ê½·¨½«Ëü·Ö½â³É£¨x+a£©2µÄÐÎʽ£®µ«¶ÔÓÚ¶þ´ÎÈýÏîʽx2+2ax-3a2£¬¾Í²»ÄÜÖ±½ÓÔËÓù«Ê½ÁË£®´Ëʱ£¬ÎÒÃÇ¿ÉÒÔÔÚ¶þ´ÎÈýÏîʽx2+2ax-3a2ÖÐÏȼÓÉÏÒ»Ïîa2£¬Ê¹ËüÓëx2+2axµÄºÍ³ÉΪһ¸öÍêȫƽ·½Ê½£¬ÔÙ¼õÈ¥a2£¬Õû¸öʽ×ÓµÄÖµ²»±ä£¬ÓÚÊÇÓУº
x2+2ax-3a2=£¨x2+2ax+a2£©-a2-3a2=£¨x+a£©2-£¨2a£©2=£¨x+3a£©£¨x-a£©£®
ÏñÕâÑù£¬ÏÈÌí-Êʵ±ÏʹʽÖгöÏÖÍêȫƽ·½Ê½£¬ÔÙ¼õÈ¥Õâ¸öÏʹÕû¸öʽ×ÓµÄÖµ²»±äµÄ·½·¨³ÆΪ¡°Åä·½·¨¡±£®
£¨1£©ÀûÓá°Åä·½·¨¡±·Ö½âÒòʽ£ºa2-6a+8£®
£¨2£©Èôa+b=5£¬ab=6£¬Ç󣺢Ùa2+b2£»¢Úa4+b4µÄÖµ£®
£¨3£©ÒÑÖªxÊÇʵÊý£¬ÊԱȽÏx2-4x+5Óë-x2+4x-4µÄ´óС£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÎÊÌâ±³¾°£ºÒÑÖªxÊÇʵÊý£¬ÇóµÄ×îСֵ¡£Òª½â¾öÕâ¸öÎÊÌâÐèÏÖÅжϳö0<x<12,¼Ì¶øÁªÏëµ½¹¹ÔìÒԱ߳¤Îª2+3ºÍ12Ϊ±ßµÄ¾ØÐΣ¬ÕÒ³öµÈÓÚµÄÏ߶Σ¬ÔٱȽϺ;ØÐζԽÇÏߵĴóС¡£

½â£º¹¹Ôì¾ØÐÎABCD£¬Ê¹AB=5£¬AD=12.ÔÚABÉϽØÈ¡AM=3£¬×ö¾ØÐÎAMND¡£ÉèµãPÊÇMNÉÏÒ»µãMP=x,ÔòPN=12-x,

£¨1£©        ÎÒÃÇ°ÑÉÏÊöÇó×îÖµÎÊÌâµÄ·½·¨½Ð×ö¹¹Í¼·¨£®Çë·ÂÔìÉÏÊö·½·¨ÇóµÄ×îСֵ¡£

̽Ë÷´´Ð£º

£¨2£©ÒÑÖªa,b,c,dÊÇÕýʵÊýÇÒa+b+c+d=1£¬ÊÔÔËÓù¹Í¼·¨ÇóµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸