精英家教网 > 初中数学 > 题目详情

【题目】矩形ABCD中,AB=4BC=3,点EAB的中点,将矩形ABCD沿CE折叠,使得点B落到点F的位置.

(1)求证AFCE.

(2)AF的长度.

【答案】1)见解析;(2.

【解析】

1)由折叠性质可得BE=EF,由EAB的中点可得EF=EA即可得出,根据外角性质可得,由即可证明,根据平行线的判定定理即可得答案;(2)过EEGAF,利用勾股定理求出CE的长,由(1)可知,即可得ΔCBEΔEGA,根据相似三角形的性质可求出AG的长,根据AF=2AG即可得答案.

1)∵ΔCBE沿CE折叠,

BE=EF

EAB的中点,

EF=EA

又∵

AFCE.

(2)EEGAF

∵四边形ABCD是矩形

RtΔCBE

由(1)可知,

ΔCBEΔEGA

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y= x2+ x﹣ 的图象与x轴交于点 A,B,交 y 轴于点 C,抛物线的顶点为 D.

(1)求抛物线顶点 D 的坐标以及直线 AC 的函数表达式;
(2)点 P 是抛物线上一点,且点P在直线 AC 下方,点 E 在抛物线对称轴上,当△BCE 的周长最小时,求△PCE 面积的最大值以及此时点 P 的坐标;
(3)在(2)的条件下,过点 P 且平行于 AC 的直线分别交x轴于点 M,交 y 轴于点N,把抛物线y= x2+ x﹣ 沿对称轴上下平移,平移后抛物线的顶点为 D',在平移的过程中,是否存在点 D',使得点 D',M,N 三点构成的三角形为直角三角形,若存在,直接写出点 D'的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得到△AB′C′,即如图,∠BAB′=θ, = = =n,我们将这种变换记为[θ,n].△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,那么θ= , n=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,对角线相较于点,以为边向外作等边,连接,交

1)如图1,若,求的长

2)如图2,点的延长线上一点,连接,连接平分.求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个正比例函数的图象经过点(﹣2,1),则这个图象也一定经过点( )
A.(﹣ ,1)
B.(2,﹣1)
C.(﹣1,2)
D.(1,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是(  )

A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学举行中国梦校园好声音歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.

1)根据图示填写下表;

平均数(分)

中位数(分)

众数(分)

初中部

85

高中部

85

100

2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;

3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:

1)填表:

2)当P点从点O出发10秒,可得到的整数点的个数是 个.

3)当P点从点O出发 秒时,可得到整数点(10 5).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽取了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:

请你根据图中的信息,解答下列问题:

1)写出扇形图中______,并补全条形图;

2)样本数据的平均数是______,众数是______,中位数是______

3)该区体育中考选报引体向上的男生共有1200人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?

查看答案和解析>>

同步练习册答案