精英家教网 > 初中数学 > 题目详情
如图,抛物线c1:y=x2-2x-3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点P为线段BC上一点,过点P作直线l⊥x轴于点F,交抛物线c1点E.
(1)求A、B、C三点的坐标;
(2)当点P在线段BC上运动时,求线段PE长的最大值;
(3)当PE为最大值时,把抛物线c1向右平移得到抛物线c2,抛物线c2与线段BE交于点M,若直线CM把△BCE的面积分为1:2两部分,则抛物线c1应向右平移几个单位长度可得到抛物线c2

【答案】分析:(1)已知了抛物线的解析式即可求出A、B、C三点的坐标.
(2)由于直线l与y轴平行,那么F、P、E三点的横坐标就应该相等,那么PE的长可看做是直线BC的函数值和抛物线的函数值的差.由此可得出关于PE的长和三点横坐标的函数关系式,根据函数的性质即可得出PE的最大值.
(3)先用平移的单位设出c2的解析式.由于直线CM把△BCE的面积分为1:2两部分,根据等高三角形的面积比等于底边比,可得出ME:BE=1:2或2:1.因此本题要分两种情况进行讨论,可过M作x轴的垂线,先根据相似三角形求出M点的横坐标,然后根据直线BE的解析式,求出M点的坐标.由于抛物线c2经过M点,据此可求出抛物线需要平移的单位.
解答:解:(1)已知抛物线过A、B、C三点,令y=0,
则有:x2-2x-3=0,
解得x=-1,x=3;
因此A点的坐标为(-1,0),B点的坐标为(3,0);
令x=0,y=-3,
因此C点的坐标为(0,-3).

(2)设直线BC的解析式为y=kx-3.
则有:3k-3=0,k=1,
因此直线BC的解析式为y=x-3.
设F点的坐标为(a,0).
PE=EF-PF=|a2-2a-3|-|a-3|=-a2+3a=-(a-2+(0≤a≤3)
因此PE长的最大值为

(3)由(2)可知:F点的坐标为(,0).
因此BF=OB-OF=
设直线BE的解析式为y=kx+b.则有:

解得:
∴直线BE的解析式为y=x-
设平移后的抛物线c2的解析式为y=(x-1-k)2-4(k>0).
过M作MN⊥x轴于N,
①ME:MB=2:1;
∵MN∥EF

∴BN=
∴N点的坐标为(,0),又直线BE过M点.
∴M点坐标为(,-).
由于抛物线c2过M点,
因此-=(-1-k)2-4,
解得k=(负值舍去).
②ME:MB=1:2;

∴BN=1
∴N点的坐标为(2,0),
∴M点的坐标为(2,-).
由于抛物线c2过M点,
则有-=(2-1-k)2-4,
解得k=1+(负值舍去).
因此抛物线c1应向右平移或1+个单位长度后可得到抛物线c2
点评:本题主要考查了一次函数解析式的确定、二次函数图象的平移、图形面积的求法、函数图象交点等知识点,考查了学生分类讨论数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,抛物线C1:y=x2-4x的对称轴为直线x=a,将抛物线C1向上平移5个单位长度得到抛物线C2,则图中的两条抛物线、直线x=a与y轴所围成的图形(图中阴影部分)的面积为
10

查看答案和解析>>

科目:初中数学 来源: 题型:

26、已知:如图,抛物线C1,C2关于x轴对称;抛物线C1,C3关于y轴对称.抛物线C1,C2,C3与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线C1,C2,C3的顶点.HN垂直于x轴,垂足为N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形
AHBG
;等腰梯形
HGEF
;平行四边形
EGFM
;梯形
DMHC
;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线c1:y=ax2-2ax-c与x轴交于A、B,且AB=6,与y轴交于C(0,-4 ).
(1)求抛物线c1的解析式;
(2)问抛物线c1上是否存在P、Q(点P在点Q的上方)两点,使得以A、C、P、Q为顶点的四边形为直角梯形,若存在,求P、Q两点坐标;若不存在,请说明理由;
(3)抛物线c2与抛物线c1关于x轴对称,直线x=m分别交c1、c2于D、E两点,直线x=n分别交c1、c2于M、N两点,若四边形DMNE为平行四边形,试判断m和n间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线C1:y=ax2+bx+1的顶点坐标为D(1,0),
(1)求抛物线C1的解析式;
(2)如图1,将抛物线C1向右平移1个单位,向下平移1个单位得到抛物线C2,直线y=x+c,经过点D交y轴于点A,交抛物线C2于点B,抛物线C2的顶点为P,求△DBP的面积
(3)如图2,连接AP,过点B作BC⊥AP于C,设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线C1:y=ax2+bx-1与x轴交于两点A(-1,0),B(1,0),与y轴交于点C.

(1)求抛物线C1的解析式;
(2)若点D为抛物线C1上任意一点,且四边形ACBD为直角梯形,求点D的坐标;
(3)若将抛物线C1先向上平移1个单位,再向右平移2个单位得到抛物线C2,直线l1是第一、三象限的角平分线所在的直线.若点P是抛物线C2对称轴上的一个动点,直线l2:x=t平行于y轴,且分别与抛物线C2和直线l1交于点D、E两点.是否存在直线l2,使得△DEP是以DE为直角边的等腰直角三角形?若存在求出t的值;若不存在说明理由.

查看答案和解析>>

同步练习册答案