精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+2经过点A(-1,0),B(5,0),与y轴交于点C.
(1)求该抛物线的解析式;
(2)点P为线段AB上一点,连接PC.将线段PC绕点P顺时针旋转90°得到线段PF,连接BF.设点P的坐标为(t,0),△PBF的面积为S,求S与t的函数关系式,并求出当△PBF的面积最大时,点P的坐标及此时△PBF的最大面积;
(3)在(2)的条件下,点P在线段OB上移动的过程中,△PBF能否成为等腰三角形?若能,求出点P的坐标;若不能,请说明理由.
(1)(法一)设抛物线的解析式为y=ax2+bx+2(a≠0),把A(-1,0),B(5,0),三点代入解析式得:
a-b+c=0
25a+5b+c=0
c=2

解得
a=-
2
5
b=
8
5
c=2

y=-
2
5
x2+
8
5
x+2

(法二)设抛物线的解析式为y=a(x-5)(x+1),
把(0,2)代入解析式得:2=-5a,
a=-
2
5

y=-
2
5
(x+1)(x-5)

y=-
2
5
x2+
8
5
x+2


(2)①过点F作FD⊥x轴于D,如图1,
当点P在原点左侧时(-1≤t<0),BP=5-t,DF=-t;
∴S△PBF=
1
2
BP×DF
=
1
2
t2
-
5
2
t(-1≤t≤0),
当t=-1时,S△PBF有最大值2;此时P点坐标为(-1,0);



②当点P在原点右侧时(0<t≤5),如图2,DF=t,BP=5-t;
∴S△PBF=
1
2
BP×DF
=-
1
2
t2+
5
2
t(0<t≤5);
当t=
5
2
时,S△PBF有最大值
25
8
;此时坐标为(
5
2
,0);
综上S与t的函数关系式为S=
1
2
t2-
5
2
t(-1≤t≤0)
-
1
2
t2+
5
2
t(0<t≤5)

当t=
5
2
时,S△PBF有最大值
25
8
;此时坐标为(
5
2
,0);



(3)能;
设P点坐标为(t,0),
当-1≤t≤0时,这样的等腰三角形不存在,
当0<t≤5时,如图3,F点坐标为(2+t,t),
PF=
4+t2
,FB=
(3-t)2+t2

若△PBF是等腰三角形,则PF=FB,
解得t=1或t=5(不符合题意舍去),
故当t=1时△PBF是等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,CD是⊙O的一条非直径的弦,且ABCD,连接AD和BC,
(1)AD和BC相等吗?为什么?
(2)如果AB=2AD=4,且A、B、C、D四点在同一抛物线上,请在图中建立适当的直角坐标系,求出该抛物线的解析式.
(3)在(2)中所求抛物线上是否存在点P,使得S△PAB=
1
2
S四边形ABCD?若存在,求出P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为(  )
A.-
2
3
B.-
2
3
C.-2D.-
1
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=-
1
2
x2+mx+m+
1
2
的图象与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,顶点D在第一象限.过点D作x轴的垂线,垂足为H.
(1)当m=
3
2
时,求tan∠ADH的值;
(2)当60°≤∠ADB≤90°时,求m的变化范围;
(3)设△BCD和△ABC的面积分别为S1、S2,且满足S1=S2,求点D到直线BC的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数的顶点坐标为(2,0),直线y=x+2与该二次函数的图象交于A,B两点,其中A点在y轴上,
(I)求此二次函数的解析式.
(II)P为线段AB上一点(A,B两端点除外),过P点作x轴的垂线PC与(I)中的二此函数的图象交于Q点,设线段PQ的长为m,P点的横坐标为x,求出函数m与自变量x之间的函数关系式,并求出自变量x的取值范围.
(III)线段AB上是否存在一点,使(II)中的线段PQ的长等于5?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在坐标平面上,抛物线与y轴的交点是(0,5),且经过两个长、宽分别为4和2的相同的长方形的顶点,则这条抛物线对应的函数关系式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式y=-
1
8
x2+
1
2
x+
3
2
,那么铅球运动过程中最高点离地面的距离为______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)连接CD,求∠OCA与∠OCD两角和的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为(  )
A.y=
25
4
x2
B.y=-
25
4
x2
C.y=-
4
25
x2
D.y=
4
25
x2

查看答案和解析>>

同步练习册答案