精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=ax2+bx+c(经过原点)与x轴相交于N点,直线y=kx+4与坐标轴分别相交于A、D两点,与抛物线相交于B(1,m)和C(2,2)两点.
(1)求直线与抛物线的表达式;
(2)求证:C点是△AOD的外心;
(3)若(1)中的抛物线,在x轴上方的部分,有一动点P(x,y),设∠PON=α.当sinα为何值时,△PON的面积有最大值?
(4)若P点保持(3)中运动路线,是否存在△PON,使得其面积等于△OCN面积的
9
16
?若存在,求出动点P的位置;若不存在,请说出理由.
(1)∵抛物线y=ax2+bx+c经过原点,
∴其表达式可以写成y=ax2+bx.
∵直线y=kx+4与抛物线相交于B、C两点,把两点的坐标代入y=kx+4,得:
2=2k+4
m=k+4

解得:
k=-1
m=3

∴直线是:y=-x+4,
点B(1,3),C(2,2)代入二次函数的表达式,得:
3=a+b
2=4a+2b

解得:
a=-2
b=5

∴抛物线的表达式为:y=-2x2+5x.

(2)∵y=-x+4,令x=0,y=4;
令y=0,x=4,
∴A(0,4),D(4,0).
∴AD=
42+42
=4
2
.而OC=2
2

∴OC=
1
2
AD.
∴C是Rt△AOD的外心.

(3)通过分析知道,P为顶点时,S△OPN面积最大.
此时,P(
5
4
25
8
),
又∵方程-2x2+5x=0的两根是x1=0,x2=
5
2
,即ON=
5
2

∴OP=
(
5
4
)
2
+(
25
8
)
2
=
5
29
8

∴sinα=
25
8
5
29
8
=
25
8
×
8
5
29
=
5
29
29
,此时△PON有最大面积(底是相同的).

(4)存在.
理由:过点P作PE⊥x轴于N点,
设点P的坐标为(x,-2x2+5x),
∴S△OCN=
1
2
ON•PD=
1
2
×
5
2
×(-2x2+5x)=
5
4
(-2x2+5x),
∵S△OCN=ON×2×
1
2
=ON=
5
2

又∵△PON的面积等于△OCN面积的
9
16

5
4
(-2x2+5x)=
5
2
×
9
16

解得:x1=
1
4
,x2=
9
4

∴当x=
1
4
时,y=
9
8

当x=
9
4
时,y=
9
8

∴点P的坐标为(
1
4
9
8
)或(
9
4
9
8
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

抛物线y=a(x+6)2-3与x轴相交于A,B两点,与y轴相交于C,D为抛物线的顶点,直线DE⊥x轴,垂足为E,AE2=3DE.
(1)求这个抛物线的解析式;
(2)P为直线DE上的一动点,以PC为斜边构造直角三角形,使直角顶点落在x轴上.若在x轴上的直角顶点只有一个时,求点P的坐标;
(3)M为抛物线上的一动点,过M作直线MN⊥DM,交直线DE于N,当M点在抛物线的第二象限的部分上运动时,是否存在使点E三等分线段DN的情况?若存在,请求出所有符合条件的M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4)
(1)求这条抛物线的解析式;
(2)设此抛物线与直线y=x相交于点A,B(点B在点A的右侧),平行于y轴的直线x=m(0<m<
5
+1)与抛物线交于点M,与直线y=x交于点N,交x轴于点P,求线段MN的长(用含m的代数式表示);
(3)在条件(2)的情况下,连接OM、BM,是否存在m的值,使△BOM的面积S最大?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:二次函数y=a(x-1)2+4的图象如图所示,抛物线交y轴于点C,交x轴于A、B两点,用A点坐标为(-1,0).
(1)求a的值及点B的坐标.
(2)连接AC、BC,E是线段OC上的动点(不与O、C两点重合),过E点作直线PE⊥y轴交线段AC于点P,交线段BC于点Q.求证:
CE
CO
=
PQ
AB

(3)设E点的坐标为(0,n),在线段AB上是否存在一点R,使得以P、Q、R为顶点的三角形与△BOC相似?若存在,求出n的值,并画出相应的示意图;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知A(0,1)、D(4,3),P是以AD为对角线的矩形ABDC内部(不在各边上)的一个动点,点C在y轴上,抛物线y=ax2+bx+1以P为顶点.
(1)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由.
(2)设抛物线y=ax2+bx+1与x轴有交点F、E(F在E的左侧),△EAO与△FAO的面积之差为3,且这条抛物线与线段AD有一个交点的横坐标为
7
2
,这时能确定a、b的值吗?若能,请求出a、b的值;若不能,请确定a、b的取值范围.(本题的图形仅供分析参考用)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

把一根长100cm的铁丝分为两部分,每一部分均弯曲成一个正方形,它们的面积和最小是______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

张伯伯利用现有的一面墙(足够长)和60米长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场(如图),设每个小矩形一边的长为x米,设四个小矩形的总面积为y平方米,
(1)请直接写出y与x的函数关系式(不要求写出自变量的取值范围);
(2)当x为何值时,y有最大值,求出最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,平面直角坐标系上有A(a,0)、B(0,-b)、C(b,0)三点,且a≥b>0,抛物线y=(x-2)(x-m)-(n-2)(n-m).(m,n为常数,且m+2≥2n>0),经过点A和点C,顶点为P
(1)当m,n满足什么关系时,S△AOB最大;
(3)如图,当△ACP为直角三角形时,判断以下命题是否正确:“直角三角形DEF的三个顶点都在这条抛物线上,且DFx轴,那么△ACP与△DEF斜边上的高相等”,如果正确请予以证明,不正确请举出反例.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2-2x-2交x轴于A、B两点,顶点为C,经过A、B、C三点的圆的圆心为M.
(1)求圆心M的坐标;
(2)求⊙M上劣弧AB的长;
(3)在抛物线上是否存在一点D,使线段OC和MD互相平分?若存在,直接写出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案