精英家教网 > 初中数学 > 题目详情
如图,⊙O的直径AB垂直于弦CD,垂足为E,AB=10,∠COD=60°,求:
(1)弦CD的长;
(2)∠COE的度数;
(3)线段BE的长(结果用根号表示).

【答案】分析:(1)先根据已知条件得出△OCD为等腰三角形,再根据∠COD=60°可得出△OCD为等边三角形,由等边三角形的性质可得出CD的长;
(2)由垂径定理可得出CE=ED,再由等腰三角形的性质得出OE平分∠COD,进而可得出∠COE的度数;
(3)先有锐角三角函数的定义可得出OE的长,由BE=OB-OE即可得出结论.
解答:解:(1)∵半径OC=OD,即△OCD为等腰三角形,
又∵∠COD=60°,
∴△OCD为等边三角形,
∴CD=OC=AB=5;

(2)∵直径AB垂直于弦CD于E,
∴CE=ED,
又∵OC=OD,即OE为等腰△OCD的底边CD上的高,
∴OE平分∠COD(三线合一),
∵∠COD=60°,
∴∠COE=30°;

(3)在Rt△OCE中,
=cos∠COE,
∴OE=OC•cos∠COE
=5•cos30°=5•=
∴BE=OB-OE=5-
点评:本题考查的是垂径定理及等边三角形的判定定理、特殊角的三角函数值,熟知以上知识是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O的直径AB与弦CD相交于E,
BC
=
BD
,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=
3
4
,求线段AD、CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径AB与弦CD(不是直径)相交于E,E是CD的中点,过点B作BF∥CD交AD的延长线于
点F.
(1)求证:BF是⊙O的切线;
(2)连接BC,若⊙O的半径为5,∠BCD=38°,求线段BF、BC的长.(精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB,CD互相垂直,P为  上任意一点,连PC,PA,PD,PB,下列结论:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•柳州)如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=
92

(1)求OD、OC的长;
(2)求证:△DOC∽△OBC;
(3)求证:CD是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是
4
3
cm
4
3
cm

查看答案和解析>>

同步练习册答案