精英家教网 > 初中数学 > 题目详情
已知 关于x的一元二次方程x2-(2k+1)x+4k-3=0.
(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;
(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.
【答案】分析:(1)根据△>0即可证明无论k取什么实数值,该方程总有两个不相等的实数根;
(2)根据勾股定理及根与系数的关系列出关于b,c的方程,解出b,c即可得出答案.
解答:解:(1)关于x的一元二次方程x2-(2k+1)x+4k-3=0,
△=(2k+1)2-4(4k-3)=4k2-12k+13=4+4>0恒成立,
故无论k取什么实数值,该方程总有两个不相等的实数根;

(2)根据勾股定理得:b2+c2=a2=31①
因为两条直角边b和c恰好是这个方程的两个根,
则b+c=2k+1②,bc=4k-3③,
因为(b+c)2-2bc=b2+c2=31,
即(2k+1)2-2(4k-3)=31,
整理得:4k2+4k+1-8k+6-31=0,即k2-k-6=0,
解得:k1=3或k2=-2(舍去),
则b+c=2k+1=7,
又因为a=
则△ABC的周长=a+b+c=+7.
点评:本题考查了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙运用△>0恒成立证明(1),再根据勾股定理和根与系数的关系列出方程组进行解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下面文字:
一般的,对于关于x的一元二次方程x2+px+q=0(p,g为常数,P2-4q≥O)的两根为x1=
-p+
p2-4q
2
x2=
-p-
p2-4q
2
,则x1+x2=-p,x1×x2=q.
用这个结论可以解决有关问题,例如:已知关于x的一元二方程x2+3x+1=0的两根为x1、x2,求
x
2
1
+
x
2
2
的值.
解:∵x1、x2是方程x2+3x+1=0的两根,∴x1+x2=-3,x1×x2=1,∴
x
2
1
+
x
2
2
=(x1+x2)2-2x1x2=(-3)2-2×1=7

请解决下面的问题:
(1)已知一元二次方程x2-3x-7=0的两个根为x1、x2,则x1+x2的值为
3
3

A、-3    B、3    C、-7D、7
(2)已知x1、x2是方程x2-2x-1=0的两根,试求(x1-2)(x2-2)的值.

查看答案和解析>>

科目:初中数学 来源:2011年中考数学复习模拟试卷(07)(解析版) 题型:解答题

(2002•浙江)已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

同步练习册答案