【题目】如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.
【1】求证:△ABE≌△CDA;
【2】若∠DAC=40°,求∠EAC的度数.
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C和△A2B2C2,它们是否关于某直线对称?若是,请用实线条画出对称轴。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了美化学习环境,加强校园绿化建设,某校计划用不多于5200元的资金购买A、B两种树苗共60棵(可以是同一种树苗),加强校园绿化建设.若购买A种树苗x棵,所需总资金为y元,A、B两种树苗的相关信息如表:
项目 | 单价(元/棵) | 成活率 |
A | 100 | 98% |
B | 60 | 90% |
(1)求y与x之间的函数关系式;
(2)若要使得所购买树苗的成活率不低于95%,有几种选购方案?所用的资金分别是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解饮料自动售货机的销售情况,有关部门从北京市所有的饮料自动售货机中随机抽取20台进行了抽样调查,记录下某一天各自的销售情况单位:元,并对销售金额进行分组,整理成如下统计表:
28,8,18,63,15,30,70,42,36,47,
25,58,64,58,55,41,58,65,72,30
销售金额x | ||||
划记 | ______ | ______ | ||
频数 | 3 | 5 | ______ | ______ |
请将表格补充完整;
用频数分布直方图将20台自动售货机的销售情况表示出来,并在图中标明相应数据;
根据绘制的频数分布直方图,你能获取哪些信息?至少写出两条不同类型信息
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点,若点Q的坐标为,其中a为常数,则称点Q是点P的“a级关联点”例如,点的“3级关联点”为,即.
已知点的“级关联点”是点,点B的“2级关联点”是,求点和点B的坐标;
已知点的“级关联点”位于y轴上,求的坐标;
已知点,,点和它的“n级关联点”都位于线段CD上,请直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A点的坐标为(0,4),B点的坐标为(3,0),C(a,b)为平面直角坐标系内一点,若∠ABC=90°,且BA=BC,求ab的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1、2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.
(1)求1号线,2号线每千米的平均造价分别是多少亿元?
(2)除1、2号线外,长沙市政府规划到2018年还要再建91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.
(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能证得
EF=BE+DF,请写出推理过程;
②如图2,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;
(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2 ,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com