精英家教网 > 初中数学 > 题目详情

【题目】如图,在梯形ABCD中,已知ADBC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.

1求证:ABE≌△CDA;

2DAC=40°,求EAC的度数.

【答案】

1见解析

2100°

【解析】利用SAS求证ABE≌△CDA

利用ABE≌△CDA和平行线的性质以及等腰三角形的性质求解

证明:在梯形ABCD中,ADBC,AB=CD,

∴∠ABE=BAD,BAD=CDA.

∴∠ABE=CDA.

ABE和CDA中,

∴△ABE≌△CDA.

解:由得:AEB=CAD,AE=AC.

∴∠AEB=ACE.

]∵∠DAC=40°∴∠AEB=ACE=40°.

∴∠EAC=180°-40°-40°=100°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系中的位置如图所示.

1)作出△ABC关于轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;

2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;

3)观察△A1B1C和△A2B2C2,它们是否关于某直线对称?若是,请用实线条画出对称轴。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了美化学习环境,加强校园绿化建设,某校计划用不多于5200元的资金购买A、B两种树苗共60棵(可以是同一种树苗),加强校园绿化建设.若购买A种树苗x棵,所需总资金为y元,A、B两种树苗的相关信息如表:

项目
品种

单价(元/棵)

成活率

A

100

98%

B

60

90%


(1)求y与x之间的函数关系式;
(2)若要使得所购买树苗的成活率不低于95%,有几种选购方案?所用的资金分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解饮料自动售货机的销售情况,有关部门从北京市所有的饮料自动售货机中随机抽取20台进行了抽样调查,记录下某一天各自的销售情况单位:元,并对销售金额进行分组,整理成如下统计表:

28,8,18,63,15,30,70,42,36,47,

25,58,64,58,55,41,58,65,72,30

销售金额x

划记

______

______

频数

3

5

______

______

请将表格补充完整;

用频数分布直方图将20台自动售货机的销售情况表示出来,并在图中标明相应数据;

根据绘制的频数分布直方图,你能获取哪些信息?至少写出两条不同类型信息

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点,若点Q的坐标为,其中a为常数,则称点Q是点P“a级关联点例如,点“3级关联点,即

已知点级关联点是点,点B“2级关联点,求点和点B的坐标;

已知点级关联点位于y轴上,求的坐标;

已知点,点和它的“n级关联点都位于线段CD上,请直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,A点的坐标为(0,4),B点的坐标为(3,0),C(a,b)为平面直角坐标系内一点,若∠ABC=90°,且BA=BC,求ab的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC.则∠PCQ的度数为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁12号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.

1)求1号线,2号线每千米的平均造价分别是多少亿元?

2)除12号线外,长沙市政府规划到2018年还要再建91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.
(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能证得
EF=BE+DF,请写出推理过程;

②如图2,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;

(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2 ,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.

查看答案和解析>>

同步练习册答案