精英家教网 > 初中数学 > 题目详情

如果一个四边形的外接圆与内切圆是同心圆,则这个四边形一定是


  1. A.
    矩形
  2. B.
    菱形
  3. C.
    正方形
  4. D.
    等腰梯形
C
分析:利用圆中弦与弦心距之间的关系计算.
解答:解:连接OE,OF,OG,OH.则OE=OF=OG=OH.
且OE⊥AD,OF⊥AB,OG⊥BC,OH⊥CD,
则AB=BC=CD=AD,===
则BD是圆的直径,
因而∠A=90°
则这个四边形是正方形.
故选C.
点评:本题主要考查了圆中弦与弦心距之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、操作与探究:
(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,是点A与点C重合,DE为折痕.试证明△CBE等腰三角形;
(2)再将图①中的△CBE沿对称轴EF折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;
(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;
(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件时,一定能折成组合矩形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,⊙M外接于矩形OABC,AB=3,BC=4,点A在y轴精英家教网上,点C在x轴上.
(1)过点A作⊙M的切线交x轴于点P,求直线PA的解析式;
(2)点F为线段PC上的一点,连接AF,若AF将四边形ABCP面积平分,求点F的坐标;
(3)如果点E为PA上的一个动点(不运动到点P,点A),直线EF将四边形PABC的周长平分,设点E纵坐标为t,△PEF的面积为S,求S与t的函数关系式,并求自变量t的取值范围;直线EF能否将四边形PABC的周长和面积同时平分?若存在,请求出直线EF的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

操作与探究:
在八年级探究“直角三角形斜边上的中线等于斜边的一半”这个结论时,我们是将一块直角三角形纸片按照图①方法折叠(点A与点C重合,DE为折痕).再将图①中的△CBE沿对称轴EF折叠(如图②),通过折叠,可以发现CE=AE=BE=
12
AB.
(1)在上述的折叠过程中,我们还可以发现原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;
(2)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足什么条件时,一定能折成组合矩形?
满足的条件是
两条对角线互相垂直
两条对角线互相垂直

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在直角坐标系中,⊙M外接于矩形OABC,AB=3,BC=4,点A在y轴上,点C在x轴上.
(1)过点A作⊙M的切线交x轴于点P,求直线PA的解析式;
(2)点F为线段PC上的一点,连接AF,若AF将四边形ABCP面积平分,求点F的坐标;
(3)如果点E为PA上的一个动点(不运动到点P,点A),直线EF将四边形PABC的周长平分,设点E纵坐标为t,△PEF的面积为S,求S与t的函数关系式,并求自变量t的取值范围;直线EF能否将四边形PABC的周长和面积同时平分?若存在,请求出直线EF的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省中考统考数学模拟试卷(3)(解析版) 题型:解答题

如图,在直角坐标系中,⊙M外接于矩形OABC,AB=3,BC=4,点A在y轴上,点C在x轴上.
(1)过点A作⊙M的切线交x轴于点P,求直线PA的解析式;
(2)点F为线段PC上的一点,连接AF,若AF将四边形ABCP面积平分,求点F的坐标;
(3)如果点E为PA上的一个动点(不运动到点P,点A),直线EF将四边形PABC的周长平分,设点E纵坐标为t,△PEF的面积为S,求S与t的函数关系式,并求自变量t的取值范围;直线EF能否将四边形PABC的周长和面积同时平分?若存在,请求出直线EF的解析式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案