【题目】如图,∠CAD和∠CBD的平分线相交于点P.设∠CAD、∠CBD、∠C、∠D的度数依次为a、b、c、d,用仅含其中2个字母的代数式来表示∠P的度数:_____.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2﹣3x+ 与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E
(1)求直线BC的解析式;
(2)当线段DE的长度最大时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料
【材料一】按一定顺序排列的一列数称为数列,记作:{an}(n属于正整数).数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第l项
(通常也叫做首项),记作:al;排在第二位的数称为这个数列的第2项,记作:a2;…;排在第打位的数称为这个数列的第n项,记作:an .
【材料二】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.
例如:数列l0,l5,20,25是等差数列.
如果数列al , a2 , a3 , …,an , …是等差数列,那么a2﹣al=d,a3﹣a2=d,…,
an﹣an﹣l=d.即:a2=al+d,a3=a2+d=al+d+d=al+2d,a4=a3+d=al+3d,….
根据上述材料,解答问题
(1)下列数列属于等差数列的是 (只填序号).
①l,2,3,4,5.②2,4,6,8,10,11.③l,1,1,1,1.
(2)已知数列{an}是等差数列,
①al=1,a2=4,a3=7,….则al0= .
②首项a1=23,公差d=2,则an= .
(3)已知等差数列{an}满足a2=0,a6+a8=﹣10.求an .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.
(1)试说明DF是⊙O的切线;
(2)若AC=3AE,求 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【定义】已知P为△ABC所在平面内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,若存在一个三角形与△ABC相似(全等除外),那么就称P为△ABC的“共相似点”,根据“共相似点”是否落在三角形的内部,边上或外部,可将其分为“内共相似点”,“边共相似点”或“外共相似点”.
(1)据定义可知,等边三角形(填“存在”或“不存在”)共相似点.
(2)如图1,若△ABC的一个边共相似点P与其对角顶点B的连线,将△ABC分割成的两个三角形恰与原三角形均相似,试判断△ABC的形状,并说明理由.
(3)如图2,在△ABC中,∠A<∠B<∠C,高线CD与角平分线BE交于点P,若P是△ABC的一个内共相似点,试说明点E是△ABC的边共相似点,并直接写出∠A的度数.
(4)如图3,在Rt△ABC中,∠C=90°,∠A=30°,BC= ,若△PBC与△ABC相似,则满足条件的P点共有个,顺次连接所有满足条件的P点而围成的多边形的周长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com