精英家教网 > 初中数学 > 题目详情
如图,点A(a,1)、B(-1,b)都在双曲线y=-
3
x
(x<0)
上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是(  )
A.y=xB.y=x+1C.y=x+2D.y=x+3

分别把点A(a,1)、B(-1,b)代入双曲线y=-
3
x
(x<0)
得a=-3,b=3,则点A的坐标为(-3,1)、B点坐标为(-1,3),
作A点关于x轴的对称点C,B点关于y轴的对称点D,所以C点坐标为(-3,-1),D点坐标为(1,3),
连结CD分别交x轴、y轴于P点、Q点,此时四边形PABQ的周长最小,
设直线CD的解析式为y=kx+b,
把C(-3,-1),D(1,3)分别代入
-3k+b=-1
k+b=3

解得
k=1
b=2

所以直线CD的解析式为y=x+2.
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,正比例函数y=k1x与反比例函数y=
k2
x
的图象交于点A,从点A向x轴和y轴分别作垂线,所组成的正方形的面积为4.
(1)分别求出正比例函数和反比例函数的函数关系式.
(2)若正比例函数与反比例函数的另一交点D的坐标为(-2,n),求n的值.
(3)求△ODC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=2x-k与反比例函数y=
k+2
x
的图象相交于A和B两点,如果有一个交点A的横坐标为3.
(1)求k的值;
(2)求A、B两点的坐标;
(3)求△AOB的面积;
(4)求使一次函数的值比反比例函数的值大的x取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P1(x1,y1),P2(x2,y2),…Pn(xn,yn)在函数y=
4
x
(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…△PnAn-1An都是等腰直角三角形,斜边OA1、A1A2、A2A3,…An-1An都在x轴上
(1)求P1的坐标;
(2)求y1+y2+y3+…y10的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在反比例函数y=
1
x
(x>0)的图象上,有一系列点P1、P2、P3、…、Pn,若P1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2.现分别过点P1、P2、P3、…、Pn作x轴与y轴的垂线段,构成若干个长方形如图所示,将图中阴影部分的面积从左到右依次记为S1、S2、S3、…、Sn,则S1+S2+S3+…+S2010=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图一次函数y=k1x+b的图象与反比例函数y=
k2
x
的图象交于点A(1,6),B(3,a).
(1)求k1、k2的值;
(2)直接写出一次函数y=k1x+b的值大于反比例函数y=
k2
x
的值时x的取值范围:______;
(3)如图,等腰梯形OBCD中,BCOD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当点P为CE的中点时,求梯形OBCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:一次函数:y=-x+4的图象与反比例函数:y=
2
x
(x>0)的图象分别交于A、B两点,点M是一次函数图象在第一象限部分上的任意一点,过M分别向x轴、y轴作垂线,垂足分别为M1、M2,设矩形MM1OM2的面积为S1;点N为反比例函数图象上任意一点,过N分别向x轴、y轴作垂线,垂足分别为N1、N2,设矩形NN1ON2的面积为S2
(1)若设点M的坐标为(x,y),请写出S1关于x的函数表达式,并求x取何值时,S1的最大值;
(2)观察图形,通过确定x的取值,试比较S1、S2的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知双曲线y=
k
x
(k>0)
经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为6,则k的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间和数据,结果如图,根据此条形图估计这一天该校学生平均课外阅读时间为(  )
A.0.96小时B.1.07小时C.1.15小时D.1.50小时

查看答案和解析>>

同步练习册答案