【题目】在创客教育理念的指引下,国内很多学校都纷纷建立创客实践室及创客空间,致力于从小培养孩子的创新精神和创造能力,某校开设了“3D”打印、数学编程、智能机器人、陶艺制作“四门创客课程记为A、B、C、D,为了解学生对这四门创客课程的喜爱情况,数学兴趣小组对全校学生进行了随机问卷调查,将调查结果整理后绘制成两幅均不完整的统计图表:
创客课程 | 频数 | 频率 |
“3D”打印 | 36 | 0.45 |
数学编程 | 0.25 | |
智能机器人 | 16 | b |
陶艺制作 | 8 | |
合计 | a | 1 |
请根据图表中提供的信息回答下列问题:
(1)统计表中的a=______,b=______;
(2)“陶艺制作”对应扇形的圆心角为______;
(3)根据调查结果,请你估计该校300名学生中最喜欢“智能机器人”创客课程的人数;
(4)学校为开设这四门课程,预计每生A、B、C、D四科投资比为4:3:6:7,若“3D打印课程每人投资200元,求学校为开设创客课程,需为学生人均投入多少钱?
【答案】(1)80,0.2;(2)36°;(3)该校300名学生中最喜欢“智能机器人”创客课程的有60人;(4)学校为开设创客课程,需为学生人均投入222.5元.
【解析】
(1)根据“3D”打印的频数和频率可以求得a的值,然后根据b对应的频数即可求得b的值;
(2)根据频数分布表中的数据可以求得“陶艺制作”对应扇形的圆心角的度数;
(3)根据频数分布表中的数据可以求得该校300名学生中最喜欢“智能机器人”创客课程的人数;
(4)根据题意和题目中的数据,可以求得学校为开设创客课程,需为学生人均投入多少钱.
(1)a=36÷0.45=80,
b=16÷80=0.2,
故答案为:80,0.2;
(2)“陶艺制作”对应扇形的圆心角为:360°×=36°,
故答案为:36°;
(3)300×0.2=60(人),
即该校300名学生中最喜欢“智能机器人”创客课程的有60人;
(4)∵每生A、B、C、D四科投资比为4:3:6:7,“3D打印课程每人投资200元,
∴每生A、B、C、D四科投资分别为:200元、150元、300元、350元,
=222.5(元),
即学校为开设创客课程,需为学生人均投入222.5元.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数()的图象与反比例函数(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).求:
(1)反比例函数和一次函数的解析式;
(2)写出当反比例函数的值大于一次函数的值时的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图象与轴交于、两点(点在点的左边),与轴交于点,,点为抛物线的顶点.
(1)求抛物线的解析式;
(2)点为线段上一点(点不与点、重合),过点作轴的垂线,与直线交于点,与抛物线交于点,过点作交抛物线于点,过点作轴于点,可得矩形,如图1,点在点左边,当矩形的周长最大时,求的值,并求出此时的的面积;
(3)已知,点在抛物线上,连,直线,垂足为,若,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD、CE,若CE是⊙O的切线.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为4,OC=7,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+mx+n经过点B(6,1),C(5,0),且与y轴交于点A.
(1)求抛物线的表达式及点A的坐标;
(2)点P是y轴右侧抛物线上的一点,过点P作PQ⊥OA,交线段OA的延长线于点Q,如果∠PAB=45°.求证:△PQA∽△ACB;
(3)若点F是线段AB(不包含端点)上的一点,且点F关于AC的对称点F′恰好在上述抛物线上,求FF′的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:
(1)通过对上面表格中的数据进行分析,发现销量y(件)与单价(元/件)之间存在一次函数关系,求y关于的函数关系式(不需要写出函数自变量的取值范围);
(2)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?
(3)为保证产品在实际试销中销售量不得低于30件,且工厂获得得利润不得低于400元,请直接写出单价的取值范围;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区决定把一块长,宽的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于,不大于,设绿化区较长边为,活动区的面积为.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于,算出.
(1)求与的函数关系式并直接写出自变量的取值范围;
(2)求活动区的最大面积;
(3)预计活动区造价为50元/,绿化区造价为40元/,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com