精英家教网 > 初中数学 > 题目详情
如图,以△ABC的边AB为直径作⊙O,交BC于点D,且∠DAC=∠B.
(1)求证:AC是⊙O的切线;
(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.
(1)证明见解析;(2).

试题分析:(1)证明△ADC∽△BAC,可得∠BAC=∠ADC=90°,继而可判断AC是⊙O的切线.
(2)根据(1)所得△ADC∽△BAC,可得出CA的长度,继而判断∠CFA=∠CAF,利用等腰三角形的性质得出AF的长度,继而得出DF的长,在Rt△AFD中利用勾股定理可得出AF的长.
(1)∵AB是⊙O的直径,
∴∠ADB=∠ADC=90°,
∵∠B=∠CAD,∠C=∠C,
∴△ADC∽△BAC,
∴∠BAC=∠ADC=90°,
∴BA⊥AC,
∴AC是⊙O的切线.
(2)∵BD=5,CD=4,
∴BC=9,
∵△ADC∽△BAC(已证),
,即AC2=BC×CD=36,
解得:AC=6,
在Rt△ACD中,AD=
∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,
∴CA=CF=6,
∴DF=CA-CD=2,
在Rt△AFD中,AF=
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.
(1)求证:BD=BF;
(2)若CF=1,cosB=,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题中,正确的是(  )
A.经过两点只能作一个圆
B.垂直于弦的直径平分弦所对的两条弧
C.圆是轴对称图形,任意一条直径是它的对称轴
D.平分弦的直径必平分弦所对的两条弧

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在圆心角为120°的扇形AOB中,半径OA=6cm,则扇形AOB的面积是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

半径为2的圆中,弦AB、AC的长分别2和2,则∠BAC的度数是()
A.15°       B.105°      C.15°或75°   D.15°或105°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列四个命题:①与圆有公共点的直线是该圆的切线;②到圆心的距离等于该圆半径的直线是该圆的切线;③垂直于圆的半径的直线是该圆的切线;④过圆直径的端点,垂直于此直径的直线是该圆的切线.其中正确的是(  )
A.①②B.①④ C.②④ D.③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

课本回顾
如图,用半径R=3cm,r=2cm的钢球测量口小内大的内孔的直径D.测得钢球顶点与孔口平面的距离分别为a=4cm,b=2cm,则内孔直径D的大小为     
问题拓展
如图,在矩形ABCD内,已知⊙O1与⊙O2互相外切,且⊙O1与边AD、DC相切,⊙O2与边AB、BC相切.若AB=4,BC=3,⊙O1与⊙O2的半径分别为r,R.求O1O2的值.
灵活运用
如图,某市民广场是半径为60米,圆心角为90°的扇形AOB,广场中两个活动场所是圆心在OA、OB上,且与扇形OAB内切的半圆☉O1☉O2,其余为花圃.若这两个半圆相外切,试计算当两半圆半径之和为50米时活动场地的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知⊙O的半径为12cm,弦AB=16cm.
(1)求圆心O到弦AB的距离;
(2)如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点形成什么样的图形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小明过生日时,戴上了漂亮的圆锥形“寿星帽”,已知该帽的母线长是25cm,底面圆半径是10cm,则这个帽子是用面积为     cm2的扇形纸版做成的.(结果用π表示)

查看答案和解析>>

同步练习册答案