精英家教网 > 初中数学 > 题目详情
精英家教网如图,在五边形ABCDE中,∠A=∠B,∠C=∠D=∠E=90°,DE=DC=4,AB=
2
,则五边形ABCDE的周长是
 
分析:延长EA、CB交于点F,根据已知条件,可证明CDEF是正方形,△ABF是等腰直角三角形,可求出AF、BF的长,进而求出五边形的周长.
解答:精英家教网解:延长EA、CB交于点F,
∵∠C=∠D=∠E=90°,
∴∠AFB=90°,
∴四边形CDEF是正方形,
又∵∠A=∠B,
∴∠FAB=∠ABF,
∴△ABF是等腰直角三角形,
又∵AB=
2

∴AF=BF=1,AE=BE=4-1=3,
∴五边形ABCDE的周长是4+4+3+3+
2
=14+
2
点评:此题主要考查正方形和等腰直角三角形的判定,综合利用了勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,在五边形ABCDE中,BC∥AD,BD∥AE,AB∥EC.图中与△ABC面积相等的三角形有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在五边形ABCDE中,∠ABC=∠AED=90°,M是CD的中点,BM=EM,求证:∠BAC=∠EAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,在五边形ABCDE中,AE⊥DE,∠BAE=120°,∠BCD=60°,∠CDE-∠ABC=30°.
(1)求∠D的度数;
(2)AB∥CD吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在五边形ABCDE中,∠ABC=∠AED=90°,∠BAC=∠EAD,M是CD中点,试判断
BM,EM的大小关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案