如图12,在平面直角坐标系中,点A,C分别在轴,轴上,四边形ABCO为矩形,AB=16,点D与点A关于轴对称,tan∠ACB=,点E,F分别是线段AD,AC上的动点(点E不与点A,D重合),且∠CEF=∠ACB。
(1)求AC的长和点D的坐标;
(2)说明△AEF与△DCE相似;
(3)当△EFC为等腰三角形时,求点E的坐标。
解:(1)∵四边形ABCO为矩形,∴∠B=90°,
在Rt△ABC中,BC=AB÷tan∠ACB=16÷=12,
则AO=BC=12, ∴ A(-12,0),
点D与点A关于轴对称,∴D(12,0);
(2)∠AFE是△CEF的外角,∴∠AFE=∠FCE+∠CEF,
∵∠CEF=∠ACB,∴∠AFE=∠FCE+∠ACB=∠BCE,
∵BC∥AD, ∴∠BCE=∠DEC,∴∠AFE=∠DEC①,
∵点A与点D关于轴对称,而C,O在对称轴上,
∴△ACO与△DCO关于轴对称,
∴∠FAE=∠EDC②, 由①,②得△AEF∽△DCE;
(3)当FE=EC时,△EFC为等腰三角形,由(2),△AEF∽△DCE,∴FE:EC=AE:DC,
此时,AE=DC=AC==20,则E(8,0);
当CF=CE时,∠CFE=∠CEF=∠ACB,则有EF∥BC,
此时,点F与A重合,则点E在D处,与已知矛盾;
当CF=FE时,∠FCE=∠CEF,又∵△AEF∽△DCE,∴∠AEF=∠DCE
∴∠FCE+∠DCE =∠CEF+∠AEF,即∠ACD=∠AEC, 而∠CAE=∠DAC,
∴△AEC∽△ACD,AE:AC=AC:AD,而AD=18,∴AE=
则E(,0),
∴当△EFC为等腰三角形时,求点E的坐标为(8,0)或(,0)。
科目:初中数学 来源: 题型:
1 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
1 |
2 |
1 |
2 |
∠OPD |
∠DOE |
查看答案和解析>>
科目:初中数学 来源: 题型:
如图12,在平面直角坐标系中,直线AB与y轴、x轴分别交于点A、点B,与双曲线交于点C(1,6)、D(3,n)两点,轴于点E,轴于点F.
(1)填空:,;
(2)求直线AB的解析式;
(3)求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图12,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=3/4。将△OAB绕着原点O逆时针旋转90o,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180o,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2。
(1)求抛物线的解析式;
(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标;
(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com