精英家教网 > 初中数学 > 题目详情

 如图12,在平面直角坐标系中,点A,C分别在轴,轴上,四边形ABCO为矩形,AB=16,点D与点A关于轴对称,tan∠ACB=,点E,F分别是线段AD,AC上的动点(点E不与点A,D重合),且∠CEF=∠ACB。

(1)求AC的长和点D的坐标;

(2)说明△AEF与△DCE相似;

(3)当△EFC为等腰三角形时,求点E的坐标。

解:(1)∵四边形ABCO为矩形,∴∠B=90°,

在Rt△ABC中,BC=AB÷tan∠ACB=16÷=12,

则AO=BC=12,  ∴ A(-12,0),

点D与点A关于轴对称,∴D(12,0);

(2)∠AFE是△CEF的外角,∴∠AFE=∠FCE+∠CEF,

∵∠CEF=∠ACB,∴∠AFE=∠FCE+∠ACB=∠BCE,

∵BC∥AD, ∴∠BCE=∠DEC,∴∠AFE=∠DEC①,

∵点A与点D关于轴对称,而C,O在对称轴上,

∴△ACO与△DCO关于轴对称,

∴∠FAE=∠EDC②, 由①,②得△AEF∽△DCE;

(3)当FE=EC时,△EFC为等腰三角形,由(2),△AEF∽△DCE,∴FE:EC=AE:DC,

此时,AE=DC=AC==20,则E(8,0);

当CF=CE时,∠CFE=∠CEF=∠ACB,则有EF∥BC,

此时,点F与A重合,则点E在D处,与已知矛盾;

当CF=FE时,∠FCE=∠CEF,又∵△AEF∽△DCE,∴∠AEF=∠DCE

∴∠FCE+∠DCE =∠CEF+∠AEF,即∠ACD=∠AEC, 而∠CAE=∠DAC,

∴△AEC∽△ACD,AE:AC=AC:AD,而AD=18,∴AE=

则E(,0),

∴当△EFC为等腰三角形时,求点E的坐标为(8,0)或(,0)。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中有矩形OABC,O是坐标系的原点,A在x轴上,C在y轴上,OA=6,OC=2.
(1)分别写出A、B、C三点的坐标;
(2)已知直线l经过点P(0,-
12
)并把矩形OABC的面积平均分为两部分,求直线l的函数表达式;
(3)设(2)的直线l与矩形的边OA、BC分别相交于M和N,以线段MN为折痕把四边形MABN翻折(如图2),使A、B两点分别落在坐标平面的A'、B'位置上.求点A'的坐标及过A'、B、C三点的抛物线的函数表达式.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|2a+b+1|+(a+2b-4)2=0.
(1)求a,b的值;
(2)①在x轴的正半轴上存在一点M,使△COM的面积=
1
2
△ABC的面积,求出点M的坐标;
②在坐标轴的其它位置是否存在点M,使△COM的面积=
1
2
△ABC的面积仍然成立?若存在,请直接写出符合条件的点M的坐标;
(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,
∠OPD
∠DOE
的值是否会改变?若不变,求其值;若改变,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图12,在平面直角坐标系中,直线ABy轴、x轴分别交于点A、点B,与双曲线交于点C(1,6)、D(3,n)两点,轴于点E轴于点F.

(1)填空:

(2)求直线AB的解析式;

(3)求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图12,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=3/4。将△OAB绕着原点O逆时针旋转90o,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180o,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2

(1)求抛物线的解析式;

(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标;

(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案