精英家教网 > 初中数学 > 题目详情

【题目】在李村河治理工程实验过程中,某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成的工程量x(m/天)的函数关系图象如图所示,是双曲线的一部分.
(1)请根据题意,求y与x之间的函数表达式;
(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠15米,问该工程队需用多少天才能完成此项任务?
(3)如果为了防汛工作的紧急需要,必须在一个月内(按30天计算)完成任务,那么每天至少要完成多少米?

【答案】
(1)解:设y=

∵点(24,50)在其图象上,

∴所求函数表达式为y=


(2)解:由图象,知共需开挖水渠24×50=1200(m);

2台挖掘机需要1200÷(2×15)=40天


(3)解:1200÷30=40(m).

故每天至少要完成40m


【解析】(1)将点(24,50)代入反比例函数的解析式,即可求得反比例函数的解析式;(2)用工作效率乘以工作时间即可得到工作量,然后除以工作效率即可得到工作时间;(3)工作量除以工作时间即可得到工作的效率.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED。正确的是( )

A. ②③ B. ②③④ C. ③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的面积为9,点的边上运动.作点关于原点的对称点,再以为边作等边.当点的边上运动一周时,点随之运动所形成的图形面积为(

A. 3 B. 9 C. 27 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCD的边长为厘米,对角线AC上的两个动点E,F,点E从点A、点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,过EEHACRtACD的直角边于H;过FFGACRtACD的直角边于G,连接HG,EB.设HE,EF,FG,GH围成的图形面积为,AE,EB,BA围成的图形面积为(这里规定:线段的面积为).E到达C,F到达A停止.若E的运动时间为x秒,解答下列问题:

(1)如图①,判断四边形EFGH是什么四边形,并证明;

(2)当0<x<8时,求x为何值时,

(3)若的和,试用x的代数式表示y.(图②为备用图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为 的中点.
(1)求证:AB=BC;
(2)求证:四边形BOCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的情况(记向东为正)记录如下(x>5x<14,单位:m):

行驶次数

第一次

第二次

第三次

第四次

行驶情况

x

x

x﹣3

2(5﹣x)

行驶方向(填西”)

   

   

   

   

(1)请将表格补充完整;

(2)求经过连续4次行驶后,这辆出租车所在的位置;

(3)若出租车行驶的总路程为41m,求第一次行驶的路程x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上,点A、B表示的数分别是-4、8(A、B两点间的距离用AB表示),点M、N是数轴上两个动点,分别表示数m、n

(1) AB=______个单位长度;若点MA、B之间,则|m+4|+|m-8|=___________

(2) |m+4|+|m-8|=20,求m的值

(3) 若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m=________;n=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了更好的开展“学校特色体育教育”,从全校八年级各班随机抽取了60学生,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图: 某校60名学生体育测试成绩成绩统计表

成绩

划记

频数

频率

优秀

正正正

a

0.3

良好

正正正正正正

30

b

合格

9

0.15

不合格

c

d

合计

(说明:40﹣55分为不合格,55﹣70分为合格,70﹣85分为良好,85﹣100分为优秀)
请根据以上信息,解答下列问题:

(1)表中的a=;b=;c=;d=
(2)请根据频数分布表,画出相应的频数分布直方图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0, ),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.

(1)求该抛物线的函数关系表达式.
(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.

查看答案和解析>>

同步练习册答案