【题目】如图,在菱形ABCD中,点F为对角线AC上一点,点E在DF的延长线上,且DF=EF,连接CE、BE,若AF=3,BE=2,BC=5,则EC=_________.
【答案】
【解析】
过点E作EG⊥AC,连接BD,AC与BD交于点H,由菱形性质可得AC与BD互相垂直平分,从而得知FH是△DEB的中位线,利用AAS定理证得△EGF≌△DHF,利用勾股定理求得DH的长度,从而得知EG和CG的长度,然后再次利用勾股定理求得EC的长度.
解:过点E作EG⊥AC,连接BD,AC与BD交于点H
在菱形ABCD中,AD=BC=5,AC⊥BD,H为BD中点,又∵DF=EF
∴FH是△DEB的中位线
∴
∵EG⊥AC,AC⊥BD
∴∠EGF=∠DHF=90°,又∵∠GFE=∠HFD,DF=EF
∴△EGF≌△DHF,
∴GE=DH,GF=HF=1
∴CH=AF+HF=4,GC=6
在Rt△ADH中,
∴EG=3
在Rt△ECG中,
故答案为:.
科目:初中数学 来源: 题型:
【题目】已知点A在函数y1=﹣ (x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1 , y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( )
A.有1对或2对
B.只有1对
C.只有2对
D.有2对或3对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在笔直的公路旁有一座山,为方便运输货物现要从公路上的处开凿隧道修通一条公路到处,已知点与公路上的停靠站的距离为,与公路上另-停靠站的距离为,停靠站之间的距离为,且
求修建的公路的长;
若公路修通后,辆货车从处经过点到处的路程是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线分别与y轴、x轴交于点A、点B,点C的坐标为(-3,0),D为直线AB上一动点,连接CD交y轴于点E.
(1) 点B的坐标为__________,不等式的解集为___________
(2) 若S△COE=S△ADE,求点D的坐标;
(3) 如图2,以CD为边作菱形CDFG,且∠CDF=60°.当点D运动时,点G在一条定直线上运动,请求出这条定直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散布;E:不运动.
以下是根据调查结果绘制的统计图表的一部分.
运动形式 | A | B | C | D | E |
人数 | 12 | 30 | m | 54 | 9 |
请你根据以上信息,回答下列问题:
(1)接受问卷调查的共有 人,图表中的m= ,n= ;
(2)统计图中,A类所对应的扇形圆心角的度数为 ;
(3)根据调查结果,我市市民最喜爱的运动方式是 ,不运动的市民所占的百分比是 ;
(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的布袋中有2个红球和3个黑球,它们只有颜色上的区别.
(1)从布袋中随机摸出一个球,求摸出红球的概率;
(2)现从布袋中取出一个红球和一个黑球,放入另一个不透明的空布袋中,甲乙两人约定做如下游戏:两人分别从这两个布袋中各随机摸出一个小球,若颜色相同,则甲获胜;若颜色不同,则乙获胜.请用树状图(或列表)的方法表示游戏所有可能的结果,并用概率知识说明这个游戏是否公平?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com