【题目】对于二次函数y= +(1-2a)x(a>0),下列说法错误的是( )
A. 当时,该二次函数图象的对称轴为y轴
B. 当a>时,该二次函数图象的对称轴在y轴的右侧
C. 该二次函数的图象的对称轴可为x=1
D. 当x>2时,y的值随x的值增大而增大
科目:初中数学 来源: 题型:
【题目】如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y 轴于点C,且点B为线段AC中点,过点A作AD⊥x轴子点D,点E 为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为( )
A. ﹣12 B. ﹣10 C. ﹣9 D. ﹣6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度.请回答下列问题:(1)试探究线段BD与线段MF的关系,并简要说明理由;
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;
(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示是一个直角三角形的苗圃,由一个正方形花坛和两块直角三角形的草皮组成.如果两个直角三角形的两条斜边长分别为4米和6米,则草皮的总面积为( )平方米.
A. 3 B. 9 C. 12 D. 24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在港口A的南偏东37°方向的海面上,有一巡逻艇B,A、B相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C处?
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,AC=2BC, 将△ABC绕点O按逆时针方向旋转90°得到△DEF,点A,B,C的对应点分别是点D,E,F.请仅用无刻度直尺分别在下面图中按要求画出相应的点(保留画图痕迹).
(1).如图1,当点O为AC的中点时,画出BC的中点N;
(2).如图2, 旋转后点E恰好落在点C,点F落在AC上,点N是BC的中点,画出旋转中心O.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知:△ABD∽△ACE,∠ABD=∠ACE=90°,连接DE,O是DE的中点。
(1)连接OC,OB 求证:OB=OC;
(2)将△ACE绕顶点A逆时针旋转到图2的位置,过点E作EM∥AD交射线AB于点M,交射线AC于点N,连接DM,BC. 若DE的中点O恰好在AB上。
①求证:△ADM∽△AEN
②求证:BC∥AD
③若AC=BD=3,AB=4,△ACE绕顶点A旋转的过程中,是否存在四边形ADME矩形的情况?如果存在,直接写出此时BC的值,若不存在说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市东坡实验中学准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了名学生(每名学生必选且只能选择这五项活动中的一种).
根据以上统计图提供的信息,请解答下列问题:
(1) , .
(2)补全上图中的条形统计图.
(3)若全校共有名学生,请求出该校约有多少名学生喜爱打乒乓球.
(4)在抽查的名学生中,有小薇、小燕、小红、小梅等名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这名女生中,选取名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率.(解答过程中,可将小薇、小燕、小红、小梅分别用字母、、、代表)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,.点从点出发,以每秒2个单位长度的速度沿边向点运动.过点作交折线于点,以为边在右侧做正方形.设正方形与重叠部分图形的面积为,点的运动时间为秒().
(1)当点在边上时,正方形的边长为______(用含的代数式表示).
(2)当点落在边上时,求的值.
(3)当点在边上时,求与之间的函数关系式.
(4)作射线交边于点,连结.当时,直接写出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com