精英家教网 > 初中数学 > 题目详情
如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.

(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;
(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;
(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.
(1)PN与⊙O相切。
(2)成立。
(3)

分析:(1)根据切线的判定得出∠PNO=∠PNM+∠ONA=∠AMO+∠ONA进而求出即可。
(2)根据已知得出∠PNM+∠ONA=90°,进而得出∠PNO=180°﹣90°=90°即可得出答案。
(3)首先根据外角的性质得出∠AON=30°,进而由,利用扇形面积和三角形面积公式得出即可。
解:(1)PN与⊙O相切。证明如下:
连接ON,则∠ONA=∠OAN,

∵PM=PN,∴∠PNM=∠PMN。
∵∠AMO=∠PMN,∴∠PNM=∠AMO。
∴∠PNO=∠PNM+∠ONA=∠AMO+∠ONA=90°。
∵ON是⊙O的半径,∴PN与⊙O相切。
(2)成立。理由如下:
连接ON,则∠ONA=∠OAN。

∵PM=PN,∴∠PNM=∠PMN。
在Rt△AOM中,∵∠OMA+∠OAM=90°,
∴∠PNM+∠ONA=90°。∴∠PNO=180°﹣90°=90°。
∵ON是⊙O的半径,∴PN与⊙O相切。
(3)连接ON,由(2)可知∠ONP=90°,
∵∠AMO=15°,PM=PN,
∴∠PNM=15°,∠OPN=30°。
∴∠PON=60°,∠AON=30°。
作NE⊥OD,垂足为点E,

则NE=ON•sin60°
 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
(1)求证:BE与⊙O相切;
(2)设OE交⊙O于点F,若DF=1,BC=2,求由劣弧BC、线段CE和BE所围成的图形面积S.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,ABCD中,AB=2,以点A为圆心,AB为半径的圆交边BC于点E,连接DE、AC、AE.

(1)求证:△AED≌△DCA;
(2)若DE平分∠ADC且与⊙A相切于点E,求图中阴影部分(扇形)的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1与⊙O2相交,它们的半径分别是4,7,则圆心距O1O2可能是
A.2B.3C.6D.12

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.

(1)求证:AC与⊙O相切.
(2)若BC=6,AB=12,求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知圆锥的底面周长是10π,其侧面展开后所得扇形的圆心角为90°,则该圆锥的母线长是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.则⊙O的直径=          .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则CED所在圆的半径为        .

查看答案和解析>>

同步练习册答案