精英家教网 > 初中数学 > 题目详情
如图1,点A(m,m+1)、B(m+3,m-1)均在反比例函数y=
k
x
的图象上,正比例函数y=nx的图象交反比例函数图象于A、C两点.
(1)求出k值和线段AC的长.
(2)在y轴上是否存在点D,使∠ADC=90°?若存在,求点D的坐标;若不存在,说明理由.
(3)如图2,若E(-4,3),点P是线段AC上的一个动点,试判断
50-CP•AP
EP2
的值是否发生变化?若不变,求出其值;若变化,说明理由.
分析:(1)利用图象上点的性质将A,B分别代入解析式,即可得出m的值,再利用反比例函数的对称性得出AC的长即可;
(2)首先在y轴的正半轴上取OD=OA=5,连接AD、CD,利用等腰三角形的性质以及三角形内角和定理进而求出即可;
(3)利用已知首先证明△ENO≌△OMA,进而得出∠EOA=90°再利用勾股定理得出即可.
解答:解:(1)∵点A(m,m+1)、B(m+3,m-1)均在反比例函数y=
k
x
的图象上,
∴m(m+1)=(m+3)(m-1),
∴解得:m=3.
∴A(3,4)、B(6,2).
∴k=m(m+1)=12;
如图1,过A作AM⊥x轴于M,
则OM=3,AM=4,
∴AO=5.
根据反比例函数的对称性,AC=2AO=10;

(2)如图1,在y轴的正半轴上取OD=OA=5,连接AD、CD.
则OD=OA=OC.
则∠OCD=∠ODC,∠OAD=∠ODA.
在△ACD中,有∠ACD+∠ADC+∠CAD=180°.
即∠OCD+∠ODC+∠OAD+∠ODA=180°.
∴∠ODC+∠ODA=90°,
即∠ADC=90°.
∴D(0,5).
同理在y轴负半轴上还有点:D′(0,-5).

另法:如图1,设OD=t,由AD2+CD2=AC2
AE2+ED2+FD2+CF2=AC2
32+(t-4)2+32+(t+4)2=102
解得:t=±5.
则D(0,5)或D′(0,-5).

(3)
50-CP•AP
EP2
的值不发生变化,理由为:
如图2,连EO,过E作EN⊥x轴于N,过A作AM⊥x轴于M.
∵E(-4,3),A(3,4),
∴EO=OA=5,EN=OM=3,NO=AM=4,
在△ENO和△OMA中,
EO=AO
EN=OM
NO=AM

∴△ENO≌△OMA(SSS),
∴∠EON=∠OAM,
∴∠EON+∠AOM=∠OAM+∠AOM=90°,
∴∠EOA=90°,
设CP=t,则AP=10-t,
CP•AP=t(10-t)=10t-t2
而EP2=OP2+EO2=(5-t)2+52=50-10t+t2
∴50-CP•AP=50-(10t-t2)=50-10t+t2
∴50-CP•AP=EP2
50-CP•AP
EP2
=1,
50-CP•AP
EP2
的值不发生变化,其值恒为1.
点评:此题主要考查了反比例函数的综合应用以及全等三角形的证明和勾股定理等知识,利用勾股定理表示出EP2与CP•AP是解本题第二问的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、若二次函数y=ax2+bx+c的图象如图,则点(a+b,ac)在(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区模拟)已知:点A、B都在半径为9的圆O上,P是射线OA上一点,以PB为半径的圆P与圆O相交的另一个交点为C,直线OB与圆P相交的另一个交点为D,cos∠AOB=
23

(1)求:公共弦BC的长度;
(2)如图,当点D在线段OB的延长线上时,设AP=x,BD=y,求y关于x的函数解析式,并写出它的定义域;
(3)如果直线PD与射线CB相交于点E,且△BDE与△BPE相似,求线段AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南通)如图,经过点A(0,-4)的抛物线y=
1
2
x2+bx+c与x轴相交于B(-2,0),C两点,O为坐标原点.
(1)求抛物线的解析式;
(2)将抛物线y=
1
2
x2+bx+c向上平移
7
2
个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;
(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线l1、l2经过K(2,2)
(1)如图1,直线l2⊥l1于K.直线l1分别交x轴、y轴于A点、B点,直线l2,分别交x轴、y轴于C、D,求OB+OC的值;
(2)在第(1)问的条件下,求S△ACK-S△OCD的值:
(3)在第(2)问的条件下,如图2,点J为AK上任一点(J不于点A、K重合),过A作AE⊥DJ于E,连接EK,求∠DEK的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,这是一个五角星ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的度数吗?为什么?(必须写推理过程) 
(2)如图2,如果点B向右移动到AC上,那么还能求出∠A+∠DBE+∠C+∠D+∠E的大小吗?若能结果是多少?(可不写推理过程)
(3)如图,当点B向右移动到AC的另一侧时,上面的结论还成立吗?
(4)如图4,当点B、E移动到∠CAD的内部时,结论又如何?根据图3或图4,说明你计算的理由.

查看答案和解析>>

同步练习册答案