A. | $\frac{\sqrt{3}}{8}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{\sqrt{2}}{8}$ |
分析 由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.
解答 解:如图1,
∵OC=1,
∴OD=1×sin30°=$\frac{1}{2}$;
如图2,
∵OB=1,
∴OE=1×sin45°=$\frac{\sqrt{2}}{2}$;
如图3,
∵OA=1,
∴OD=1×cos30°=$\frac{\sqrt{3}}{2}$,
则该三角形的三边分别为:$\frac{1}{2}$、$\frac{\sqrt{2}}{2}$、$\frac{\sqrt{3}}{2}$,
∵($\frac{1}{2}$)2+($\frac{\sqrt{2}}{2}$)2=($\frac{\sqrt{3}}{2}$)2,
∴该三角形是以$\frac{1}{2}$、$\frac{\sqrt{2}}{2}$为直角边,$\frac{\sqrt{3}}{2}$为斜边的直角三角形,
∴该三角形的面积是$\frac{1}{2}$×$\frac{1}{2}$×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{8}$,
故选:D.
点评 本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{10}{3}$π | B. | $\frac{10}{9}$π | C. | $\frac{5}{9}$π | D. | $\frac{5}{18}$π |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 45° | B. | 50° | C. | 55° | D. | 60° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 58° | B. | 90° | C. | 32° | D. | 38° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com