精英家教网 > 初中数学 > 题目详情

【题目】45°角的直角三角板如图放置在平面直角坐标系中,其中A(-30),B02),则直线BC的解析式为______

【答案】y=-x+2

【解析】

CCDx轴于点D,则可证得△AOB≌△CDA,可求得CDOD的长,可求得C点坐标,利用待定系数法可求得直线BC的解析式.

解:如图,过CCDx轴于点D

∵∠CAB=90°,

∴∠DAC+∠BAO=∠BAO+∠ABO=90°,

∴∠DAC=∠ABO

在△AOB和△CDA

∴△AOB≌△CDAAAS),

A(-30),B02),

AD=BO=2CD=AO=3

C(-53),

设直线BC解析式为y=kx+b

,解得

∴直线BC解析式为y=-x+2

故答案为:y=-x+2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(问题发现)

(1)如图(1)四边形ABCD中,若AB=ADCB=CD,则线段BDAC的位置关系为   

(拓展探究)

(2)如图(2)在RtABC中,点F为斜边BC的中点,分别以ABAC为底边,在RtABC外部作等腰三角形ABD和等腰三角形ACE,连接FDFE,分别交ABAC于点MN.试猜想四边形FMAN的形状,并说明理由;

(解决问题)

(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,于点的角平分线相交于点为边的中点,,则

A.125°B.145°C.175°D.190°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC90°AB5cmBC13cm,点D在线段AC上,且CD7cm,动点P从距B15cmE点出发,以每秒2cm的速度沿射线EA的方向运动,时间为t秒.

1)求AD的长.

2)用含有t的代数式表示AP的长.

3)在运动过程中,是否存在某个时刻,使△ABC与△ADP全等?若存在,请求出t值;若不存在,请说明理由.

4)直接写出t______秒时,△PBC为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠B90°AC60cm,∠A60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点DE运动的时间是ts0t≤15).过点DDFBC于点F,连接DEEF

1)求证:四边形AEFD是平行四边形;

2)当t为何值时,DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD是平行四边形.

(1)用直尺和圆规在BC、AD上分别求作点E,F使AECF为菱形(不要求写作法,保留作图痕迹);

(2)求证:AECF为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,对角线ACBD相交于点O,过点O的直线分别交边ABCDADBC于点EFGH

(感知)如图①,若四边形ABCD是正方形,且EFGH,易知SBOE=SAOG,又因为SAOB=S四边形ABCD,所以S四边形AEOG=S正方形ABCD(不要求证明);

(拓展)如图②,若四边形ABCD是矩形,且S四边形AEOG=S矩形ABCD,若AB=aAD=bBE=m,求AG的长(用含abm的代数式表示);

(探究)如图③,若四边形ABCD是平行四边形,且S四边形AEOG=SABCD,若AB=3AD=5BE=1,则AG=______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形纸片ABCDAB=4BC=3,点PBC边上,将△CDP沿DP折叠,点C落在点E处,PE.、DE分别交AB于点OF,且OP=OF,则BP的长为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一个单位面积为1的方格纸上,A1A2A3A3A4A5A5A6A7……是斜边在x轴上,且斜边长分别为246……的等腰直角三角形.若A1A2A3的顶点坐标分别为A120),A21-1),A300),则依图中所示规律,点A2019的横坐标为(  )

A. 1010B. C. 1008D.

查看答案和解析>>

同步练习册答案