精英家教网 > 初中数学 > 题目详情
12.如图,在△ABC中,点D是BC边的中点,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:DE=DF.

分析 根据中线的定义可得BD=CD,然后利用“角角边”证明△BDE和△CDF全等,根据全等三角形对应边相等即可得证.

解答 证明:∵AD是△ABC的中线,
∴BD=CD,
∵BE⊥AD,CF⊥AD,
∴∠BED=∠CFD=90°,
在△BDE和△CDF中,
$\left\{\begin{array}{l}{∠BED=∠CFD}\\{∠BDE=∠CDF}\\{BD=CD}\end{array}\right.$,
∴△BDE≌△CDF(AAS),
∴BE=CF

点评 本题考查了全等三角形的判定与性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.已知△ABC的各边长度分别为3cm、4cm、5cm,则连接各边中点的三角形周长为(  )
A.2cmB.7cmC.5cmD.6cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:如图1,点D是边长为2的等边△ABC边BC所在直线上的一动点,从点B向C方向运动,以AD为边向右侧作等边△ADE.
(1)连接CE,若点D在边BC上时,易知线段CE、CD、AC三者之间的关系为CE+CD=AC; 如图2当点D在C的右侧时,试探索线段CE、CD、AC三者之间的数量关系,并说明理由.
(2)如图1,当点D从B运动到C时,①直接写出△CDE周长的最小值.②直接写出点E的运动路径长.
(3)若将题目中条件“等边△ADE”改为“满足∠ADE=60°与等边△ABC的外角平分线交于点E”,么CE与BD还相等吗?如图3请作出判断并给出说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,BE平分∠ABC交CD、AC分别于G、E,GF∥AC交AB于F,猜想:EF与AB有怎样的位置关系,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,△ABC中,∠ACB=90°,BC=$\sqrt{5}$,AC=2$\sqrt{5}$,
(1)若⊙C切AB于D,求⊙C半径及切线AD的长;
(2)直接写出⊙C与线段AB有两个公共点时半径r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某单位为增强职工的安全意识,举办了安全应急知识竞赛活动,为了解情况,从中抽取部分职工的竞赛成绩(分数为正整数)进行统计,整理成下面的表格和统计图
成绩(分)49.5-59.559.5-69.569.5-79.579.5-89.589.5-100.5
频数(人)  20 32  a   b   c
频率    0.08    0.20    0.36
(1)直接写出a、b、c的值,并补全条形统计图.
(2)这次抽样调查的数据中,中位数在哪个分数段.
(3)已知本次竞赛中有5人获得满分,其中有三名女职工,两名男职工.请用树状图或列表的方法求“从这五位满分获得者中随机抽取两人刚好是一男一女”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,C为线段AE上一动点(不与点A,E重合),在AE在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,OC,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤OC平分∠AOE.一定成立的结论有①②③⑤.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列命题中是真命题的是(  )
A.阴天会下雨是必然事件
B.若关于x的一元二次方程kx2-2x-1=0有实数根,则k≥-1
C.在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k
D.多边形的外角和等于360°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在四边形ABCD中,AD∥BC,∠D=90°,BC=50,AD=36,CD=27.点E从C出发以每秒5个单位长度的速度向B运动,点F从A出发,以每秒4个单位长度的速度向D运动.两点同时出发,当其中一个动点到达终点时,另一个动点也随之停止运动.过点F作FG⊥BC,垂足为G,连结AC交FG于P,连结EP.
(1)点E、F中,哪个点最先到达终点?
(2)求△PEC的面积S与运动时间t的函数表达式,并写出自变量t的取值范围.当t为何值时,S的值最大;
(3)当△CEP为锐角三角形时,求运动时间t的取值范围.

查看答案和解析>>

同步练习册答案