精英家教网 > 初中数学 > 题目详情
7.阅读材料:如图1,在平面直角坐标系中,以坐标平面内任意一点M(a,b)为圆心,半径为r作圆,点P(x,y)在⊙M上,则必有(x-a)2+(y-b)2=r2
尝试证明:为了证明阅读材料上的结论,小明作了辅助线:过点M和点P分别作x轴、y轴的平行线,两平行线交于点N可得点N的坐标是(x,b)(用字母表示),完成小明的证明过程.
结论应用:如图2,点A、B、C均在坐标轴上,OB=OC=OA=4,过A、O、B作⊙D,E是⊙D上任意一点,连接CE,BE.
(1)当线段CE经过点D时,求点E的坐标;
(2)在点E的运动过程中,线段CE和线段BE的长度随之变化,试求CE2+BE2的最大值和最小值.

分析 尝试证明:直接点的坐标的特点即可得出结论;
结论应用:(1)先确定出⊙D的解析式,再确定出直线CE解析式,联立方程组即可得出点E坐标;
(2)设出点E坐标,进而表示出CE2+BE2,再根据极值确定出点E的坐标即可求出最大值和最小值.

解答 解:尝试证明:∵MN∥x轴,
∴点N的纵坐标和点M的纵坐标相同,是b,
∵PN∥y轴,
∴点N的横坐标和点P的横坐标相同,是x,
∴N(x,b);
故答案为(x,b).
结论应用:(1)如图,

∵点A、B、C均在坐标轴上,OB=OC=OA=4,
∴A(0,4),B(4,0),C(-4,0);
∴AB=4$\sqrt{2}$,
∵过A、O、B作⊙D,
∴D(2,2),
∴(x-2)2+(y-2)2=8①.
∵线段CE经过点D(2,2),C(-4,0),
∴直线CE解析式为y=$\frac{1}{3}$x+$\frac{4}{3}$②,
联立①②得,$\left\{\begin{array}{l}{x=2+\frac{6\sqrt{5}}{5}}\\{y=2+\frac{2\sqrt{5}}{5}}\end{array}\right.$或$\left\{\begin{array}{l}{x=2-\frac{6\sqrt{5}}{5}}\\{y=2-\frac{2\sqrt{5}}{5}}\end{array}\right.$(由于线段CE过点D,所以舍去),
∴E(2+$\frac{6\sqrt{5}}{5}$,2+$\frac{2\sqrt{5}}{5}$);
(2)设点E的坐标为(m,n)
,∵点E在⊙D上,
∴(m-2)2+(n-2)2=8,
∴m2+n2=4(m+n)③,
∵B(4,0),C(-4,0),
∴CE2+BE2=(m+4)2+n2+(m-4)2+n2=2(m2+n2)+32
∴m2+n2是表示⊙D上的任意一个点E到原点的距离,
∴当点E(0,0)时,CE2+BE2最小值为32,
当点E是射线OD和⊙D的交点时,
∵D(2,2),∴直线OD解析式为y=x,
∴m=n,将m=n代入③得,m=n=4,
∴CE2+BE2最大值为96.

点评 此题是圆的综合题,主要考查了圆的性质,待定系数法,平面坐标系内,两点间的距离公式,解方程组,极值确定,求出点E坐标是解本题的关键,确定出CE2+BE2的极值是解本题的难点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.定义:如果二次函数y1=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y2=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求y=-x2+3x-2函数的“旋转函数”.小明是这样思考的:由y=-x2+3x-2函数可知a1=-1,b1=3,c1=-2,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.
请参考小明的方法解决下面的问题:
(1)写出函数y=-x2+3x-2的“旋转函数”;
(2)若函数y1=x2-$\frac{4n}{3}$x+n与y2=-x2+mx-3互为“旋转函数”,求(m+n)2016的值;
(3)已知函数y=2(x+1)(x-4)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,请指出经过点A1、B1、C1的二次函数与y=2(x+1)(x-4)是否互为“旋转函数”.填是 (是或不是).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,射线OA交反比例函数y=$\frac{1}{x}$(x>0)图象于点P,点R为反比例函数y=$\frac{1}{x}$(x>0)图象上的另一点,且PR=2OP,分别过点P、R作x轴、y轴的平行线,两线相交于点M(a,b),直线MR交x轴于点B,过点P作y轴的平行线分别交直线OM和x轴于点Q、H,连接RQ.
(1)求出点P、R的坐标和直线OM 的解析式(用含a、b 的式子表示);
(2)试探究∠MOB和∠AOB之间的数量关系,并说明理由;
(3)如果将反比例函数y=$\frac{1}{x}$(x>0)改为y=$\frac{k}{x}$(k>0,x>0)时,上述(2)中的结论是否成立是(填“是”或“否”).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图1所示,将一个边长为2的正方形ABCD和一个长为2,宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF,现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为α.
(1)当边CD′恰好经过EF的中点H时,求旋转角α的大小;
(2)如图2,G为BC中点,且0°<α<90°,求证:GD′=E′D;
(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△BCD′能否全等?若能,直接写出旋转角α的大小;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在Rt△ABC中,∠C=90°,AB=13,AC=12,则∠A的正弦值为(  )
A.$\frac{5}{12}$B.$\frac{12}{13}$C.$\frac{12}{5}$D.$\frac{5}{13}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.一次函数y=-$\frac{{\sqrt{3}}}{3}$x+1的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内做等边△ABC
(1)求△ABC的面积和点C的坐标;
(2)如果在第二象限内有一点P(a,$\frac{1}{2}$),试用含a的代数式表示四边形ABPO的面积.
(3)在x轴上是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读材料:
如果一个矩形的宽与长的比值恰好为黄金比,人们就称它为“黄金矩形”(Golden Rectangle).在很多艺术品以及大自然中都能找到它,希腊雅典的巴特农神庙、法国巴黎圣母院就是很好的例子.
小明想画出一个黄金矩形,经过思考,他决定先画一个边长为2的正方形ABCD,如图1,取CD边的中点E,连接BE,在BE上截取EF=EC,在BC上截取BG=BF;然后,小明作了两条互相垂直的射线,如图2,OF⊥OG于点O.小明利用图1中的线段,在图2中作出一个黄金矩形OMPN,且点M在射线OF上,点N在射线OG上.
请你帮助小明在图1中完成作图,要求尺规作图,保留作图痕迹.
(1)求CG的长;
(2)图1中哪两条线段的比是黄金比?请你指出其中一组线段;
(3)请你利用(2)中的结论,在图2中作出一个黄金矩形OMPN,且点M在射线OF上,点N在射线OG上.要求尺规作图,保留作图痕迹.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图1,直线AB:y=$\frac{4}{3}$x+8与x轴、y轴分别交于A、D两点,点B的横坐标为3.点C(9,0),连接BC,点E是y轴正半轴上一点,连接AE,将△ADE沿AE折叠,点D恰好落在x轴上的点D1处.
(1)求点E的坐标;
(2)连接EC,点F(m,0),G(m+2,0)为x轴上两点,其中3<m<7.过点F作FF1⊥x轴交BC于点F1,交EC于点M过点G作GG1⊥x轴交BC于点G1,交EC于点N,当F1M+G1N=10时,求m的值;
(3)如图2,在等边△PQR中,PR⊥x轴且PR=4(点Q、R在x轴上方).△PQR从点C出发以每秒2个单位长度的速度沿x轴负方向运动,设运动的时间为t,当t为何值时,点Q到直线AC和直线AB的距离相等?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知反比例函数y=$\frac{{k}^{2}}{x}$的图象与正比例函数y=(k-2)x的图象没有交点,那么k的取值范围是k<2且k≠0.

查看答案和解析>>

同步练习册答案