精英家教网 > 初中数学 > 题目详情
如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为
π+1
π+1
分析:根据旋转的性质作出图形,再利用勾股定理列式求出正方形的对角线,然后根据点A运动的路径线与x轴围城的面积为三个扇形的面积加上两个直角三角形的面积,列式计算即可得解.
解答:解:如图,∵正方形ABCD的边长为1,
∴对角线长:
12+12
=
2

点A运动的路径线与x轴围成的面积为:
90•π•12
360
+
90•π
2
2
360
+
90•π•12
360
+
1
2
×1×1+
1
2
×1×1
=
1
4
π+
1
2
π+
1
4
π+
1
2
+
1
2

=π+1.
故答案为:π+1.
点评:本题考查了旋转的性质,正方形的性质,扇形的面积,读懂题意并作出图形,观察出所求面积的组成部分是解题的关键,作出图形更形象直观.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,精英家教网sin∠BOA=
35

求:(1)点B的坐标;(2)cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大丰市一模)如图所示,在直角坐标平面内,函数y=
mx
(x>0,m是常数)
的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD、DC、CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)四边形ABCD能否为菱形?如果能,请求出四边形ABCD为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD、DC、CB.

1.若△ABD的面积为4,求点B的坐标

2.求证:DC∥AB

3.四边形ABCD能否为菱形?如果能,请求出四边形ABCD 为菱形时,直线AB的函数解析式;如果不能,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD、DC、CB.

【小题1】若△ABD的面积为4,求点B的坐标
【小题2】求证:DC∥AB
【小题3】四边形ABCD能否为菱形?如果能,请求出四边形ABCD 为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省盐城市大丰市中考数学一模试卷(解析版) 题型:解答题

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD、DC、CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)四边形ABCD能否为菱形?如果能,请求出四边形ABCD为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案