精英家教网 > 初中数学 > 题目详情
14.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是(  )
A.60°B.50°C.40°D.30°

分析 根据直角三角形的两锐角互余,求出∠D=40°,再根据平行线的性质即可解答.

解答 解:如图所示,
∵FE⊥BD,
∴∠FED=90°,
∴∠1+∠D=90°,
∵∠1=50°,
∴∠D=40°,
∵AB∥CD,
∴∠2=∠D=40°.
故选C.

点评 本题主要考查平行线的性质、垂线及直角三角形的性质,解决此题时,根据直角三角形的性质求出∠D的度数是解决此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.已知直角三角形ABC中,点D为斜边BC的中点,AC=4,BC=8,直角EDF的两边分别与直线AC,直线AB交于点E和点F,BF=7,则AE的长为7$\sqrt{3}$-4或7$\sqrt{3}$+4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,△ABC中,∠C=90°,AC=3cm,BC=6cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CBA与C、P、Q三点构成的三角形相似,求所需要的时间是多少秒?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.方程组$\left\{\begin{array}{l}{x+y=1}\\{2x+y=5}\end{array}\right.$的解为(  )
A.$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$B.$\left\{\begin{array}{l}{x=-2}\\{y=3}\end{array}\right.$C.$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$D.$\left\{\begin{array}{l}{x=4}\\{y=-3}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别2、8、15、5,则第5组的频率为0.4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,平面上有直线a及直线a外的三点A、B、P.
(1)过点P画一条直线m,使得m∥a;
(2)过B作BH⊥直线m,并延长BH至B′,使得BB′为直线a、m之间的距离;
(3)若直线a、m表示一条河的两岸,现要在这条河上建一座桥(桥与河岸垂直),使得从村庄A经桥过河到村庄B的路程最短,试问桥应建在何处?画出示意图.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某农民带了若干千克土豆进城出售,为了方便,他带了一些零用钱备用,他先按市场价卖出一些后,又降价卖,卖出土豆千克数x与他手中持有的钱数y(含备用零钱)的关系如图所示.结合图象回答下列问题:
(1)该农民自带的零钱是多少?
(2)降价前土豆的单价是多少?
(3)降价后他按每千克0.4元将剩余下的土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.【试题背景】已知:l∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2.我们把四个顶点分别在l、m、n、k这四条平行线上的四边形称为“绣湖四边形”.
【探究1】(1)如图1,正方形ABCD为“绣湖四边形”,BE⊥l于点E,BE的反向延长线交直线k于点F.求正方形ABCD的边长.
【探究2】(2)矩形ABCD为“绣湖四边形”,其长:宽=2:1,则矩形ABCD的宽为.(直接写出结果即可)
【探究3】(3)如图2,菱形ABCD为“绣湖四边形”且∠ADC=60°,△AEF是等边三角形,AE⊥k于点E,∠AFD=90°,直线DF分别交直线l、k于点G、M.求证:EC=DF.
【拓 展】(4)如图3,l∥k,等边三角形ABC的顶点A、B分别落在直线l、k上,AB⊥k于点B,且AB=4,∠ACD=90°,直线CD分别交直线l、k于点G、M,点D、E分别是线段GM、BM上的动点,且始终保持AD=AE,DH⊥l于点H.猜想:DH在什么范围内,BC∥DE?并说明此时BC∥DE的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,小明从点A出发,沿直线前进8m后向左转60°,再沿直线前进8m,又向左转60°…照这样走下去,小明第一次回到出发点A,一共走了48米.

查看答案和解析>>

同步练习册答案