分析 由角平分线的性质得出DE=DC,由勾股定理求出AB=10,在Rt△BDE中,由勾股定理得出方程,解方程即可.
解答 解:作DE⊥AB于E,如图所示:
∵∠C=90°,AD平分∠BAC,
∴DE=DC,由勾股定理得:AE=AC=8,
∵Rt△ABC中,∠C=90°,
∴AB=$\sqrt{B{C}^{2}+A{C}^{2}}$=10,
∴BE=AB-AE=2,
设DE=DC=x,则BD=BC-DC=6-x,
在Rt△BDE中,由勾股定理得:22+x2=(6-x)2,
解得:x=$\frac{8}{3}$,
∴点D到AB的距离为$\frac{8}{3}$.
故答案为:$\frac{8}{3}$.
点评 本题考查的是勾股定理、角平分线的性质;由勾股定理得出方程是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | x-(y-z)=x-y-z | B. | -(x-y+z)=-x-y+z | ||
C. | x+2y+2z=x-2(y+z) | D. | -a+c+d-b=-(a+b)+(c+d) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | a=6,b=8,c=10 | B. | a=5k,b=12k,c=13k | ||
C. | a=5,b=7,c=8 | D. | a=$\sqrt{7}$,b=$\sqrt{3}$,c=2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com