精英家教网 > 初中数学 > 题目详情
(2013•临沂)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为(  )
分析:由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8-t,再根据正方形的性质的OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF-S△CEF=16-
1
2
(8-t)•t,然后配方得到S=
1
2
(t-4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.
解答:解:根据题意BE=CF=t,CE=8-t,
∵四边形ABCD为正方形,
∴OB=OC,∠OBC=∠OCD=45°,
∵在△OBE和△OCF中
OB=OC
∠OBE=∠OCF
BE=CF

∴△OBE≌△OCF(SAS),
∴S△OBE=S△OCF
∴S四边形OECF=S△OBC=
1
4
×82=16,
∴S=S四边形OECF-S△CEF=16-
1
2
(8-t)•t=
1
2
t2-4t+16=
1
2
(t-4)2+8(0≤t≤8),
∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.
故选B.
点评:本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•临沂)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•临沂)如图,已知AB∥CD,∠2=135°,则∠1的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•临沂)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•临沂)如图,抛物线经过A(-1,0),B(5,0),C(0,-
52
)三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案