分析 (1)作AB的垂直平分线DE,垂足为D,交AC于E,DE即为所求;
(2)由线段垂直平分线的性质得出AE=BE,由∠A=60°,即可得出△ABE是等边三角形;
(3)由三角形的周长和AE=BE得出BC+AC=13,由等边三角形的性质得出AB=AE=6,即可得出△ABC的周长.
解答 解:(1)根据题意得:
作AB的垂直平分线DE,垂足为D,交AC于E,DE即为所求,
如图1所示:
(2)△ABE是等边三角形,理由如下:
如图2所示:
∵DE是AB的垂直平分线,
∴AE=BE,
∵∠A=60°,
∴△ABE是等边三角形;
(3)∵△BCE的周长为13,
∴BC+BE+CE=13,
∵AE=BE,
∴BC+AC=13,
∵△ABE是等边三角形,
∴AB=AE=6,
∴△ABC的周长=AB+BC+AC=6+13=19.
点评 本题考查了翻折变换的性质、线段垂直平分线的性质、等边三角形的判定与性质;熟练掌握翻折变换的性质,证明三角形是等边三角形是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | m≥-1 | B. | m>-1 | C. | m≤-1且m≠0 | D. | m≥-1且m≠0 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0,1,2 | B. | 1,0,1 | C. | 1,-1,0 | D. | 0,-1,0 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com