精英家教网 > 初中数学 > 题目详情
精英家教网等腰直角三角形ABC中,∠BAC=90°,BD平分∠ABC交AC于点D,若AB+AD=8cm,则底边BC上的高为
 
cm.
分析:利用等腰直角三角形两直角边相等,结合勾股定理解答.
解答:精英家教网解:作DE⊥BC于E,
因为BD平分∠ABC,根据角平分线上的点到角的两边的距离相等,
设AC=AB=x,则DE=AD=8-x,CD=x-(8-x),
在等腰直角三角形CDE中,根据勾股定理,
2(8-x)2=[x-(8-x)]2
解得x=4
2

作BC边上的高AF,
AF=ABsin45°=4
2
×
2
2
=2×2=4,
则底边BC上的高为4cm.
故答案为4.
点评:解答本题的关键是作出底边BC上的高ED,然后列方程解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).
(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;
(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的
516
?若存在,求出此时x的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为4.若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=a,CD=b.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;
(2)求a•b的值;
(3)在旋转过程中,当△AFG旋转到如图2的位置时,AG与BC交于点E,AF的延长线与CB的延长线交于点D,那么a•b的值是否发生了变化?为什么?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(单位:m),等腰直角三角形ABC以2米/秒的速度沿直线L向正方形移动,直到精英家教网AB与CD重合.设x秒时,三角形与正方形不重叠部分的面积为ym2
(1)写出y与x的关系式,并写出自变量x的取值范围;
(2)请画出此函数的图象;
(3)当不重叠部分的面积是三角形面积的一半时,三角形移动了多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰直角三角形△ABC中,∠ACB=90°,点D是BC的中点,CE⊥AD于点F交AB于点E,CH是AB上的高交AD于点G.
(1)找出图中的全等三角形;
(2)找出与∠ADC相等的角,并请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

等腰直角三角形ABC的直角顶点C在y轴上,AB在x轴上,且A在B的左侧,AC=
2
,则A点的坐标是
(-1,0)
(-1,0)

查看答案和解析>>

同步练习册答案