分析 首先计算出QB的长,再分三种情况:①如图1,PQ=AQ=5时;②如图2,AP=AQ=5时;③如图3,PQ=AQ=5且△PBQ为钝角三角形时分别计算出CP的长即可.
解答 解:∵AB=10,点Q是BA的中点,
∴AQ=$\frac{1}{2}$BA=$\frac{1}{2}$×10=5,
∵四边形ABCD是矩形,
∴DC=AB=10,∠B=∠C=∠D=90°,
①如图1,PQ=AQ=5时,过点P作PE⊥BA于E,
根据勾股定理,QE=$\sqrt{{5}^{2}-{4}^{2}}$=3,
∴BE=BQ+QE=5+3=8,
∴CP=BE=8;
②如图2,AP=AQ=5时,
根据勾股定理,DP=$\sqrt{A{P}^{2}-A{D}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3,
∴CP=10-3=7;
③如图3,PQ=AQ=5且△PBQ为钝角三角形时,过点P作PE⊥BA于E,
根据勾股定理:QE=$\sqrt{P{Q}^{2}-P{E}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3,
∵BE=QB-EQ=5-3=2,
∴CP=BE=2,
综上所述,CP的长为2或7或8.
故答案为:2、7或8.
点评 此题主要考查了矩形的性质,以及勾股定理的应用和等腰三角形的判定,难点在于要分情况讨论,作出图形更形象直观.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x2-$\frac{1}{4}$ | B. | x2-x+$\frac{1}{4}$ | C. | x2+2x+$\frac{1}{4}$ | D. | x2-2x+$\frac{1}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com