精英家教网 > 初中数学 > 题目详情

如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,交连接AC、FC.
(1)求证:∠ACF=∠ADB;
(2)若点A到BD的距离为m,BF+CF=n,求线段CD的长;
(3)当⊙P的大小发生变化而其他条件不变时,数学公式的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.

(1)证明:连接AB,
∵OP⊥BC,
∴BO=CO,
∴AB=AC,
又∵AC=AD,
∴AB=AD,
∴∠ABD=∠ADB,
又∵∠ABD=∠ACF,
∴∠ACF=∠ADB.

(2)解:过点A作AM⊥CF交CF的延长线于M,过点A作AN⊥BF于N,连接AF,
则AN=m,
∴∠ANB=∠AMC=90°,
在△ABN和△ACM中

∴Rt△ABN≌Rt△ACM(AAS)
∴BN=CM,AN=AM,
又∵∠ANF=∠AMF=90°,
在Rt△AFN和Rt△AFM中

∴Rt△AFN≌Rt△AFM(HL),
∴NF=MF,
∴BF+CF=BN+NF+CM-MF,
=BN+CM=2BN=n,
∴BN=
∴在Rt△ABN中,AB2=BN2+AN2=m2+=m2+
在Rt△ACD中,CD2=AB2+AC2=2AB2=2m2+
∴CD=

(3)解:的值不发生变化,
过点D作DH⊥AO于N,过点D作DQ⊥BC于Q,
∵∠DAH+∠OAC=90°,∠DAH+∠ADH=90°,
∴∠OAC=∠ADH,
在△DHA和△AOC中

∴Rt△DHA≌Rt△AOC(AAS),
∴DH=AO,AH=OC,
又∵BO=OC,
∴HO=AH+AO=OB+DH,
而DH=OQ,HO=DQ,
∴DQ=OB+OQ=BQ,
∴∠DBQ=45°,
又∵DH∥BC,
∴∠HDE=45°,
∴△DHE为等腰直角三角形,
=
=
分析:(1)连接AB,根据线段垂直平分线性质求出AB=AC=AD,推出∠ADB=∠ABD,根据∠ABD=∠ACM求出即可;
(2)过点A作AM⊥CF交CF的延长线于M,过点A作AN⊥BF于N,连接AF,根据AAS证Rt△ABN≌Rt△ACM,推出BN=CM,AN=AM,证Rt△AFN≌Rt△AFM(HL),推出NF=MF,求出BN长,根据勾股定理和等腰直角三角形性质求出CD的平方,即可求出答案;
(3)过点D作DH⊥AO于N,过点D作DQ⊥BC于Q,根据AAS证Rt△DHA≌Rt△AOC,推出DH=AO,AH=OC,推出DQ=BQ,得出∠DBQ=45°,推出∠HDE=45°,得出等腰直角三角形DHE即可.
点评:本题综合考查了勾股定理,等腰直角三角形的性质,等腰三角形的性质,全等三角形的性质和判定,圆周角定理,线段垂直平分线性质等知识点,解(1)小题关键是求出∠ABD=∠ADB,解(2)小题的关键是求出BN的长,解(3)小题的关键是证出等腰直角三角形DEH,此题综合性比较强,有一定的难度,但题型较好.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•金华模拟)如图,点A在x轴的正半轴,菱形OABC的面积为
2
,点B在双曲线y=
k
x
上,点C在直线y=x上,则k的值为
2
+1
2
+1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,交连接AC、FC.
(1)求证:∠ACF=∠ADB;
(2)若点A到BD的距离为m,BF+CF=n,求线段CD的长;
(3)当⊙P的大小发生变化而其他条件不变时,
DEAO
的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=
3
3
x+2
3
与x轴、y轴分别相交于点D、点E,连接AC并延长与y轴相交于点B,点B的坐标为(0,4
3
).
(1)求证:OE=CE;
(2)请判断直线CD与⊙P位置关系,证明你的结论,并请求出⊙P的半径长.

查看答案和解析>>

科目:初中数学 来源:2012年福建省福州市中考数学模拟试卷(十)(解析版) 题型:填空题

如图,点A在x轴的正半轴,菱形OABC的面积为,点B在双曲线上,点C在直线y=x上,则k的值为   

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省义乌市初中毕业生学业模拟考试数学试卷(解析版) 题型:填空题

如图,点A在x轴的正半轴,菱形OABC的面积为,点B在双曲线上,点C在直线y=x上,则k的值为____________.

 

查看答案和解析>>

同步练习册答案