精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在四边形ABCD中,∠ABC90°CDADAD2CD22AB2

1)求证:ABBC

2)当BEADE时,试证明:BEAECD

【答案】1)(2)证明见解析

【解析】

1)题目中存在直角,垂直,含线段平方的等式,因此考虑连接AC,构造直角三角形,利用勾股定理证明

2)可采用截长法证明,过点CCFBEF,易证CD=EF,只需再证明AE=BF即可,这一点又可通过全等三角形获证.

解:(1)证明:连接AC

∵∠ABC90°,∴AB2BC2AC2

CDAD,∴AD2CD2AC2

AD2CD22AB2

AB2BC22AB2

ABBC

2)证明:过CCFBEF

BEAD,∴四边形CDEF是矩形

CDEF

∵∠ABE+∠BAE90°,∠ABE+∠CBF90

∴∠BAE=∠CBF

又∵ABBC,∠BEA=∠CFB

∴△BAE≌△CBFAAS

AEBF

BEBFEF AECD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下面是小东设计的过直线外一点作这条直线的平行线的尺规作图过程.已知:如图1,直线l及直线l外一点A

求作:直线AD,使得ADl.作法:如图2

①在直线l上任取一点B,连接AB

②以点B为圆心,AB长为半径画弧,

交直线l于点C

③分别以点AC为圆心,AB长为半径

画弧,两弧交于点D(不与点B重合);

④作直线AD

所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)

证明:连接CD

AD=CD=__________=__________

∴四边形ABCD ).

ADl ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数,试问:按这种方法能组成哪些位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图,等腰直角中,,现将该三角形放置在平面直角坐标系中,点坐标为,点坐标为.

1)过点轴,求的长及点的坐标;

2)连接,若为坐标平面内异于点的点,且以为顶点的三角形与全等,请直接写出满足条件的点的坐标;

3)已知,试探究在轴上是否存在点,使是以为腰的等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:

每个商品的售价x(元)

30

40

50

每天的销售量y(个)

100

80

60

(1)求yx之间的函数表达式;

(2)设商场每天获得的总利润为w(元),求wx之间的函数表达式;

(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,测量人员在山脚A处测得山顶B的仰角为45°,沿着仰角为30°的山坡前进1000米到达D处,在D处测得山顶B的仰角为60°,求山的高度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+mx+nx轴交于AB两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A10),C02).

1)求抛物线的表达式;

2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

3)点E时线段BC上的一个动点,过点Ex轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆的直径,O为半圆的圆心,AC是弦,取弧的中点D,过点DDEACAC的延长线于点E

1)求证:DEO的切线;

2)当AB=10AC=5时,求CE的长;

3)连接CDAB=10.当=时,求DE的长.

查看答案和解析>>

同步练习册答案