精英家教网 > 初中数学 > 题目详情
精英家教网如图抛物线y=-
3
3
x2-
2
3
3
x+
3
,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.
分析:(1)分别令x=0以及y=0求出A、B、C三点的坐标.
(2)依题意得出BC∥AE,又已知A、B、C的坐标易求出点E的坐标,又因为四边形AEBC是平行四边形且∠ACB=90°可得四边形AEBC是矩形.
(3)作点A关于BC的对称点A′,连接′'D与直线BC交于点P.则可得点P是使△PAD周长最小的点,然后求出直线A′D,直线BC的函数解析式联立方程求出点P的坐标.
解答:解:(1)y=-
3
3
x2-
2
3
3
x+
3

令x=0,得y=
3

令y=0,
-
3
3
x2-
2
3
3
x+
3
=0

即x2+2x-3=0,
∴x1=1,x2=-3
∴A,B,C三点的坐标分别为A(-3,0),B(1,0),C(0,
3
)(3分)

(2)①过点E作EF⊥AB于F,
精英家教网∵C(0,
3
),
∴EF=
3

∵B(1,0),
∴AF=1,
∴OF=OA-AF=3-1=2,
∴E(-2,-
3
)(5分)
②四边形AEBC是矩形.
理由:四边形AEBC是平行四边形,且∠ACB=90°(7分)

(3)存在.(8分)
D(-1,
4
3
3

作出点A关于BC的对称点A′,连接A′D与直线BC交于点P.
精英家教网则点P是使△PAD周长最小的点.(10分)
∵AO=3,
∴FO=3,
CO=
3

∴A′F=2
3

∴求得A′(3,2
3

过A′、D的直线y=
3
6
x+
3
3
2

过B、C的直线y=-
3
x+
3

两直线的交点P(-
3
7
10
3
7
).(12分)
点评:本题综合考查了二次函数的有关知识以及利用待定系数法求出函数解析式,难度中上.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=
3
3 
 
x2+
2
3
3
x-
3
交x轴于A、B两点,交y轴于点C,顶点为D.
(1)求点A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC,求E点的坐标;
(3)试判断四边形AEBC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=a(x-1)2+3
3
(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?
(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,圆B切y轴于原点O,过定点A(-2
3
,0)作圆B的切线交圆于点P,已知ta精英家教网n∠PAB=
3
3
,抛物线C经过A,P两点.
(1)求圆B的半径.
(2)若抛物线C经过点B,求其解析式.
(3)设抛物线C交y轴于点M,若三角形APM为直角三角形,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•临汾二模)如图,在平面直角坐标系中,O为原点,已知A(2,0)、C(1,3
3
),将△OAC绕AC的中点E旋转180°,点O落到点B的位置,抛物线y=ax2-2
3
x经过点A,点D是抛物线的顶点.
(1)求抛物线的表达式;
(2)判断点B是否在抛物线上;
(3)若点P是x轴上A点左边的一个动点,当以P、A、D为顶点的三角形与△OAB相似时,求出点P的坐标;
(4)若点M是y轴上的一个动点,要使△MAD的周长最小,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC的顶点坐标分别为A(0,
3
),B(-
1
2
3
2
),C(1,0),∠ABC=90°,BC与y轴的交点为D,D点坐标为(0,
3
3
),以点D为顶点y轴为对称轴的抛物线过点B.
(1)求该抛物线的解析式.
(2)将△ABC沿AC折叠后得到点B的对应点B',求证:四边形AOCB'是矩形,并判断点B'是否在(1)的抛物线上.
(3)延长BA交抛物线于点E,在线段BE上取一点P,过点P作x轴的垂线,交抛物线于点F,是否存在这样的点P,使四边形PADF是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案