精英家教网 > 初中数学 > 题目详情

【题目】铁路货运调度站有A、B两个信号灯,在灯这旁停靠着甲、乙、丙三列火车.它们中最长的车长与居中车长之差等于居中车长与最短车长之差,其中乙车的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A信号灯处,而车头则冲着B信号灯的方向,乙车的车尾则位于B信号灯处,车头则冲着A的方向,现在,三列火车同时出发向前行驶,3秒之后三列火车的车头恰好相遇,再过9秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直到完全错开一共用了_____秒钟.

【答案】7.8.

【解析】

设乙车的车长为m,三车的等差为d,甲、乙、丙三列火车的速度分别为V、V、V、由题意得:甲车短,丙车长,甲车快,丙车慢,甲车长为:m-d,丙车长为:m+d,因为3秒之后三列火车的车头恰好相遇,再过9秒,甲车恰好超过丙车,所以V-V=[m+d-(m-d)]÷3=(m-d)÷9,乙丙两车车头相遇,再过9秒,丙车也正好完全和乙车错开,所以V+V=(m+m+d)÷9,计算即可解答.

设乙车的车长为m,三车的等差为d,甲、乙、丙三列火车的速度分别为V、V、V

∴甲车长为:m-d,丙车长为:m+d,

V-V=[m+d-(m-d)]÷3=(m-d)÷9

m=7d,

∵乙丙两车车头相遇,再过9秒,丙车也正好完全和乙车错开,

V+V=(m+m+d)÷9,

m=7d代入,可得:V+V=15d÷9=d,

V-V=[m+d-(m-d)]÷3=

V+V=(m+m+d)÷9=

∴甲乙两车从车头相遇直到完全错开需要时间:(m+m-d)÷

m=7d代入,可得:13d÷=7.8(秒)

∴甲乙两车从车头相遇直到完全错开需要7.8秒.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,一般地,学生的注意力y随时间t的变化情况如下表:

上课时间t(分)

0

5

10

15

20

25

30

35

40

45

学生的注意力y

100

191

240

240

240

205

170

135

100

65

(1)讲课开始后第5分钟时与讲课开始后第25分钟时比较,何时学生的注意力更集中?

(2)从表中观察,讲课开始后,学生的注意力最集中的时间是那一段?

(3)从表中观察,讲课开始后,学生的注意力从第几分钟起开始下降?猜想注意力下降过程中yt的关系,并用式子表示出来。

用(3)题中的关系式,求当t=27分时,学生的注意力y的值是多少。现有一道数学难题,需要讲解20分钟,为了效果更好,要求学生的注意力最低达到190,那么老师能否在学生注意力达到所需状态下讲完这道题目,试着说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.

(1)按要求作图:

①画出ABC关于原点O的中心对称图形A1B1C1

②画出将ABC绕点A逆时针旋转90°得到AB2C2

(2)回答下列问题:

①△A1B1C1中顶点A1坐标为 ②若P(a,b)为ABC边上一点,则按照(1)中①作图,点P对应的点P1的坐标为

【答案】(1)作图见解析;(2)(1,-2)(-a,-b)

【解析】试题分析:(1)首先找出对应点的位置,再顺次连接即可;

2根据图形可直接写出坐标;根据关于原点对称点的坐标特点可得答案.

试题解析:(1)如图所示:

2根据图形可得A1坐标为(2﹣4);

P1的坐标为(﹣a﹣b).

故答案为:(﹣2﹣4);(﹣a﹣b).

考点:作图-旋转变换.

型】填空
束】
23

【题目】在学习了普查与抽样调查之后,某校八(1)班数学兴趣小组对该校学生的视力情况进行了抽样调查,并画出了如图所示的条形统计图.请根据图中信息解决下列问题:

(1)本次抽查活动中共抽查了  名学生;

(2)已知该校七年级、八年级、九年级学生数分别为360人、400人、540人.

①试估算:该校九年级视力不低于4.8的学生约有  名;

②请你帮忙估算出该校视力低于4.8的学生数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠A60°,点EF分别为ADDC上的动点,∠EBF=60°,点E从点A向点D运动的过程中,AECF的长度(

A. 逐渐增加 B. 逐渐减小

C. 保持不变且与EF的长度相等 D. 保持不变且与AB的长度相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解学生的课外阅读情况,就“我最喜爱的课外读物”对文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),并根据调查结果绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)这次被调查的学生共有多少名?
(2)请将条形统计图补充完整;并在扇形统计图中,计算出“其他类”所对应的圆心角的度数;
(3)若该校有2400名学生,请你估计该校喜爱“科普类”的学生有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:

(1)2(100.5y)=﹣(1.5y+2)

(2)(x5)3(x5)

(3)1

(4)x(x9)[x+(x9)]

(5) -=0.5x+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,点EFBD上,且ABBEDF

(1)求证:四边形AECF是菱形;

(2)若正方形的边长为2,求四边形AECF的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先让我们一起来学习方程m2+1= 的解法:
解:令m2=a,则a+1= ,方程两边平方可得,(a+1)2=a+3
解得a1=1,a2=﹣2,∵m2≥0∴m2=1∴m=±1
点评:类似的方程可以用“整体换元”的思想解决.
不妨一试:
如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.

(1)求抛物线的解析式;
(2)①当P点运动到A点处时,通过计算发现:POPH(填“>”、“<”或“=”);
(3)当△PHO为等边三角形时,求点P坐标;
(4)如图2,设点C(1,﹣2),问是否存在点P,使得以P、O、H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案