精英家教网 > 初中数学 > 题目详情
有5个边长为1的正方形,排列形式如图,请把它们分割后拼接成一个大正方形.(在正方形中画出拼接的虚线)
精英家教网
分析:由于每一个小正方形的面积都是1,则5个小正方形的面积为5,因此分割后拼接成一个新的正方形的面积也是5,故拼接的新正方形的边长为
5
,根据勾股定理可得
5
是边长为1和2的直角三角形的斜边长,因此可把5个小正方形分成4个直角三角形和一个正方形,利用赵爽弦图进行拼接即可.
解答:解:分割方法和拼接方法分别如图(1)和(2).
精英家教网
点评:此题主要考查了图形的剪拼,关键是根据题目意思确定所拼接的新正方形的边长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,A、B两点的坐标分别为(-3,0)、(0,3),C点在x轴的正半轴上,且到原点的距离为1.点P、Q分别从A、B两点同时出发,以相同的速度分别向x轴、y轴的正方向作匀速直线运动,直线PQ交直线AB于D.
(1)求经过A、B、C三点的抛物线及直线AB解析式;
(2)设AP的长为m,△PBQ的面积为S,求出S关于m的函数关系式.
(3)作PE⊥AB于E,当P、Q运动时,线段DE的长是否改变?若改变请说明理由,若不改变,请求出DE的长;
(4)有一个以AB为边的,且由两个与△AOB全等的三角形拼结而成的平行四边形ABST,试求出T点的坐标(画出图形,直接写出结果,不需求解过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为
7
7
.最短路线有
7
7
条;
②与原点O的“出租车距离”等于30的路口共有
120
120
个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有
780
780
条.

查看答案和解析>>

科目:初中数学 来源:2006年初中毕业升学考试(吉林长春卷)数学(解析版) 题型:解答题

如图①,正方形的顶点的坐标分别为,顶点在第一象限.点从点出发,沿正方形按逆时针方向匀速运动,同时,点从点出发,沿轴正方向以相同速度运动.当点到达点时,两点同时停止运动,设运动的时间为秒.

(1)求正方形的边长.(2分)

(2)当点边上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分(如图②所示),求两点的运动速度.(2分)

(3)求(2)中面积(平方单位)与时间(秒)的函数关系式及面积取最大值时点的坐标.(4分)

(4)若点保持(2)中的速度不变,则点沿着边运动时,的大小随着时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小.当点沿着这两边运动时,使的点     个.(2分)

(抛物线的顶点坐标是.)

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为______.最短路线有______条;
②与原点O的“出租车距离”等于30的路口共有______个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有______条.

查看答案和解析>>

科目:初中数学 来源:2009年安徽省合肥市一中高一自主招生考试数学试卷(解析版) 题型:解答题

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为______.最短路线有______条;
②与原点O的“出租车距离”等于30的路口共有______个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有______条.

查看答案和解析>>

同步练习册答案