精英家教网 > 初中数学 > 题目详情
13.如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.
(1)求证:△AEF≌△DCE;
(2)若CD=1,求BE的长.

分析 (1)根据矩形的性质和已知条件可证明△AEF≌△DCE;
(2)由(1)可知AE=DC,在Rt△ABE中由勾股定理可求得BE的长.

解答 (1)证明:在矩形ABCD中,∠A=∠D=90°,
∴∠1+∠2=90°,
∵EF⊥EC,
∴∠FEC=90°,
∴∠2+∠3=90°,
∴∠1=∠3,
在△AEF和△DCE中,
$\left\{\begin{array}{l}{∠A=∠D}\\{∠1=∠3}\\{EF=EC}\end{array}\right.$,
∴△AEF≌△DCE(AAS);

(2)解:由(1)知△AEF≌△DCE,
∴AE=DC=1,
在矩形ABCD中,AB=CD=1,
在R△ABE中,AB2+AE2=BE2,即12+12=BE2
∴BE=$\sqrt{2}$.

点评 本题主要考查矩形的性质和全等三角形的判定和性质,在(1)中证得三角形全等是解题的关键,在(2)中注意勾股定理的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.为迎接“劳动周”的到来,某校将九(1)班50名学生本周的课后劳动时间比上周都延长了10分钟,则该班学生本周劳动时间的下列数据与上周比较不发生变化的是(  )
A.平均数B.中位数C.众数D.方差

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.用科学记数法表示-0.00000123=-1.23×10-6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在平面上,Rt△ABC与直径为CE的半圆O,如图1摆放,∠B=90°,BC=m,AC=2CE=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转,且∠ECD=∠ACB,旋转角记为α(0°≤α≤180°).
(1)①当α=0°时,连接DE,则∠CDE=90°,CD=$\frac{1}{2}$m;②当α=180°时,$\frac{BD}{AE}$=$\frac{m}{n}$.
(2)试判断:旋转过程中$\frac{BD}{AE}$的大小有无变化?请仅就图2的情形给出证明.
(3)若m=4,n=5,当α=∠ACB时,线段BD=$\frac{6\sqrt{5}}{5}$.
(4)若m=4$\sqrt{2}$,n=6,当半圆O旋转至与△ABC的边相切时,线段BD=2$\sqrt{10}$或$\frac{2\sqrt{114}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知,点A的坐标是(-1,-3),点B的坐标是(-3,-2),点C的坐标是(-3,-3)
(1)请将△ABC绕点B逆时针旋转90°,点A,C的对应点分别是点D,E,画出旋转后的△BDE,直接写出点D,E的坐标;
(2)在旋转过程中,点A所经过的路径是一段圆弧,求$\widehat{AD}$的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.若函数y=(m+1)x|m|是正比例函数,则该函数的图象经过第一、三象限.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件:A.摸出的三个球中至少有一个球是黑球;B.摸出的三个球都是白球;C.摸出的三个球都是黑球;D.摸出的三个球中有两个球是白球.其中是不可能事件的为B(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解不等式组:$\left\{\begin{array}{l}{3(x-2)≥x-4①}\\{\frac{2x+1}{3}>x-1②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:-32+6cos45°-$\sqrt{2}$(2-$\sqrt{2}$)+|$\sqrt{2}$-3|.

查看答案和解析>>

同步练习册答案