1£®Èç¹ûÒ»¸öÊýµÄƽ·½µÈÓÚ-1£¬¼ÇΪi2=-1£¬Õâ¸öÊýi½Ð×öÐéÊýµ¥Î»£®ÄÇôºÍÎÒÃÇËùѧµÄʵÊý¶ÔÓ¦ÆðÀ´¾Í½Ð×ö¸´Êý£¬±íʾΪa+bi£¨a£¬bΪʵÊý£©£¬a½ÐÕâ¸ö¸´ÊýµÄʵ²¿£¬b½Ð×öÕâ¸ö¸´ÊýµÄÐ鲿£¬ËüµÄ¼Ó£¬¼õ£¬³Ë·¨ÔËËãÓëÕûʽµÄ¼Ó£¬¼õ£¬³Ë·¨ÔËËãÀàËÆ£®
È磺£¨2+i£©+£¨3-4i£©=£¨2+3£©+£¨1-4£©i=5-3i£¬
£¨5+i£©£¨3-4i£©=5¡Á3+5¡Á£¨-4i£©+i¡Á3+i¡Á£¨-4i£©=15-20i+3i-4i2=19-17i
Çë¸ù¾ÝÒÔÉÏÄÚÈݵÄÀí½â£¬ÀûÓÃÒÔǰѧϰµÄÓйØ֪ʶ½«£¨1+2i£©£¨1-3i£©»¯¼ò½á¹ûΪ7-i£®

·ÖÎö ÏÈÀûÓöàÏîʽ³Ë¶àÏîʽ·¨Ôò½øÐмÆË㣬×îºó½«i2=-1´úÈ뻯¼ò¼´¿É£®

½â´ð ½â£º£¨1+2i£©£¨1-3i£©=1-i-6i2=1-i+6=7-i£®
¹Ê´ð°¸Îª£º7-i£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊÇʵÊýµÄÔËË㣬ÊìÁ·ÕÆÎÕ¶àÏîʽ³Ë¶àÏîʽ·¨ÔòÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ë³´ÎÁ¬½Ó¶Ô½ÇÏß»¥Ïà´¹Ö±µÄËıßÐεĸ÷±ßÖе㣬ËùµÃͼÐÎÒ»¶¨ÊÇ£¨¡¡¡¡£©
A£®Õý·½ÐÎB£®¾ØÐÎC£®ÁâÐÎD£®Ö±½ÇÌÝÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÈçͼËùʾ£¬ÔÚÿ¸ö±ß³¤¶¼Îª1µÄСÕý·½ÐÎ×é³ÉµÄÍø¸ñÖУ¬µãA¡¢B¡¢C¾ùΪ¸ñµã£®
£¨¢ñ£©Ï߶ÎABµÄ³¤¶ÈµÈÓÚ5£»
£¨¢ò£©ÈôPΪÏ߶ÎABÉϵĶ¯µã£¬ÒÔPC¡¢PAΪÁڱߵÄËıßÐÎPAQCΪƽÐÐËıßÐΣ¬µ±PQ³¤¶È×îСʱ£¬ÇëÄã½èÖúÍø¸ñºÍÎ޿̶ȵÄÖ±³ß»­³ö¸ÃƽÐÐËıßÐΣ¬²¢¼òҪ˵Ã÷ÄãµÄ×÷ͼ·½·¨£¨²»ÒªÇóÖ¤Ã÷£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èçͼ£¬ÔÚÕý·½ÐÎABCDÖУ¬¡÷APBCÊǵȱßÈý½ÇÐΣ¬Á¬½ÓPD£¬DB£¬Ôò$\frac{{S}_{¡÷BPD}}{{S}_{Õý·½ÐÎABCD}}$=$\frac{\sqrt{3}-1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¶ÔÓÚÒ»¸öÈýλÕýÕûÊýt£¬½«¸÷ÊýλÉϵÄÊý×ÖÖØÐÂÅÅÐòºó£¨°üÀ¨±¾Éí£©£¬µÃµ½Ò»¸öеÄÈýλÊý$\overline{abc}$£¨a¡Üc£©£¬ÔÚËùÓÐÖØÐÂÅÅÁеÄÈýλÊýÖУ¬µ±|a+c-2b|×îСʱ£¬³Æ´ËʱµÄ$\overline{abc}$ΪtµÄ¡°×îÓÅ×éºÏ¡±£¬²¢¹æ¶¨F£¨t£©=|a-b|-|b-c|£¬ÀýÈ磺124ÖØÐÂÅÅÐòºóΪ£º142¡¢214¡¢ÒòΪ|1+4-4|=1£¬|1+2-8|=5£¬|2+4-2|=4£¬ËùÒÔ124Ϊ124µÄ¡°×îÓÅ×éºÏ¡±£¬´ËʱF£¨124£©=-1£®
£¨1£©ÈýλÕýÕûÊýtÖУ¬ÓÐÒ»¸öÊýλÉϵÄÊý×ÖÊÇÁíÍâÁ½ÊýλÉϵÄÊý×ÖµÄƽ¾ùÊý£¬ÇóÖ¤£ºF£¨t£©=0
£¨2£©Ò»¸öÕýÕûÊý£¬ÓÉN¸öÊý×Ö×é³É£¬Èô´Ó×óÏòÓÒËüµÄµÚһλÊýÄܱ»1Õû³ý£¬ËüµÄÇ°Á½Î»ÊýÄܱ»2Õû³ý£¬Ç°ÈýλÊýÄܱ»3Õû³ý£¬¡­£¬Ò»Ö±µ½Ç°NλÊýÄܱ»NÕû³ý£¬ÎÒÃdzÆÕâÑùµÄÊýΪ¡°ÉÆÑÅÊý¡±£®ÀýÈ磺123µÄµÚһλÊý1ÄÜÅû1Õû³ý£¬ËüµÄÇ°Á½Î»Êý12Äܱ»2Õû³ý£¬Ç°ÈýλÊý123Äܱ»3Õû³ý£¬Ôò123ÊÇÒ»¸ö¡°ÉÆÑÅÊý¡±£®ÈôÈýλ¡°ÉÆÑÅÊý¡±m=200+10x+y£¨0¡Üx¡Ü9£¬0¡Üy¡Ü9£¬x¡¢yΪÕûÊý£©£¬mµÄ¸÷λÊý×ÖÖ®ºÍΪһ¸öÍêȫƽ·½Êý£¬Çó³öËùÓзûºÏÌõ¼þµÄ¡°ÉÆÑÅÊý¡±ÖÐF£¨m£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¶ÔÓÚÓÐÀíÊý£¬¹æ¶¨ÐÂÔËË㣺x¡ùy=ax+by+xy£¬ÆäÖÐa£¬bÊdz£Êý£¬µÈʽÓұߵÄÊÇͨ³£µÄ¼Ó·¨ºÍ³Ë·¨ÔËË㣬ÒÑÖª£º2¡ù1=9£¬£¨-3£©¡ù3=3£¬Çóa¡¢bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èçͼ£¬ÔÚµÈÑüÖ±½Ç¡÷ABCÖУ¬¡ÏBAC=90¡ã£¬AB=AC£¬BC=4$\sqrt{2}$£¬µãDÊÇACÉÏÒ»¶¯µã£¬Á¬½ÓBD£¬ÒÔADΪֱ¾¶µÄÔ²½»BDÓÚµãE£¬ÔòÏ߶ÎCE³¤¶ÈµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®2B£®4C£®$2\sqrt{2}-2$D£®$2\sqrt{5}-2$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßy=$\frac{1}{4}$x2+bx+c¾­¹ýµãA£¨-2£¬0£©ºÍÔ­µã£¬µãBÔÚÅ×ÎïÏßÉÏÇÒtan¡ÏBAO=$\frac{1}{2}$£¬Å×ÎïÏߵĶԳÆÖáÓëxÖáÏཻÓÚµãP£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£¬²¢Ö±½Óд³öµãPµÄ×ø±ê£»
£¨2£©µãCΪÅ×ÎïÏßÉÏÒ»µã£¬ÈôËıßÐÎAOBCΪµÈÑüÌÝÐÎÇÒAO¡ÎBC£¬ÇóµãCµÄ×ø±ê£»
£¨3£©µãDÔÚABÉÏ£¬Èô¡÷ADPÏàËÆÓÚ¡÷ABP£¬ÇóµãDµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªmΪÕûÊý£¬Ôò¹ØÓÚxµÄ·½³Ì£¨2+x£©m+x=4µÄ½âΪÕûÊý£®
£¨1£©Óú¬mµÄ´úÊýʽ±íʾx£»
£¨2£©ÇómµÄËùÓпÉÄÜÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸