精英家教网 > 初中数学 > 题目详情
9.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:$\sqrt{3}$,求大楼AB的高度是多少?(精确到0.1米,参考数据:$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73,$\sqrt{6}$≈2.45)

分析 延长AB交DC于H,作EG⊥AB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=$\sqrt{3}$x米,在Rt△BCH中,BC=12米,由勾股定理得出方程,解方程求出BH=6米,CH=6$\sqrt{3}$米,得出BG、EG的长度,证明△AEG是等腰直角三角形,得出AG=EG=6$\sqrt{3}$+20(米),即可得出大楼AB的高度.

解答 解:延长AB交DC于H,作EG⊥AB于G,如图所示:
则GH=DE=15米,EG=DH,
∵梯坎坡度i=1:$\sqrt{3}$,
∴BH:CH=1:$\sqrt{3}$,
设BH=x米,则CH=$\sqrt{3}$x米,
在Rt△BCH中,BC=12米,
由勾股定理得:x2+($\sqrt{3}$x)2=122
解得:x=6,
∴BH=6米,CH=6$\sqrt{3}$米,
∴BG=GH-BH=15-6=9(米),EG=DH=CH+CD=6$\sqrt{3}$+20(米),
∵∠α=45°,
∴∠EAG=90°-45°=45°,
∴△AEG是等腰直角三角形,
∴AG=EG=6$\sqrt{3}$+20(米),
∴AB=AG+BG=6$\sqrt{3}$+20+9≈39.4(米).
故大楼AB的高度大约是39.4米.

点评 本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.下列命题的逆命题是假命题的是(  )
A.对顶角相等
B.角平分线上的点到这个角的两边的距离相等
C.如果a2=b2,那么a=b
D.同旁内角互补,两直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.若关于x的一元二次方程(k+1)x2+2(k+1)x+k-2=0有实数根,则k的取值范围在数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.
(1)求每辆大客车和每辆小客车的乘客座位数;
(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案.在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)解不等式组:$\left\{\begin{array}{l}{3x+1≤2}\\{\frac{2x-1}{3}>x}\end{array}\right.$
(2)如图,已知正五边形ABCDE,AF∥CD交DB的延长线于点F,交DE的延长线于点G.求∠G的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,菱形ABCD中,∠BAD=45°,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于2,则AB=2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:
将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是(  )
A.1.4B.1.1C.0.8D.0.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)20170-|-sin45°|cos45°+$\sqrt{(-3)^{2}}$-(-$\frac{1}{4}$)-1
(2)$\left\{\begin{array}{l}{\frac{2(x+y)}{3}-\frac{x+y}{4}=-\frac{1}{12}}\\{3(x+y)-2(x-y)=3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,点M、N在?ABCD的对角线AC上,且AM=CN,求证:四边形BMDN是平行四边形.

查看答案和解析>>

同步练习册答案