【题目】受“新冠”疫情的影响,某销售商在网上销售、两种型号的“手写板”,获利颇丰.已知型,型手写板进价、售价和每日销量如表格所示:
进价(元/个) | 售价(元/个) | 销量(个/日) | |
型 | |||
型 |
根据市场行情,该销售商对型手写板降价销售,同时对型手写板提高售价,此时发现型手写板每降低元就可多卖个,型手写板每提高元就少卖个,要保持每天销售总量不变,设其中型手写板每天多销售个,每天总获利的利润为元
(1)求与之间的函数关系式并写出的取值范围;
(2)要使每天的利润不低于元,直接写出的取值范围;
(3)该销售商决定每销售一个型手写板,就捐元给因“新冠疫情”影响的困难家庭,当时,每天的最大利润为元,求的值.
【答案】(1)(),且x为整数;(2),且x为整数;(3)
【解析】
(1)设型手写板每天多销售个,则B型手写板每天少销售个,根据总获利的利润等于销售A型手写板所获利润加上销售B型手写板所获利润,根据每件销售的利润,每日的销量都为非负数且为非负整数求出x的取值范围;
(2)结合(1)将总利润函数进行配方,求出当时的x值,结合图象得到每天的利润不低于元时的x的取值范围,进而求解;
(3)设捐款后每天的利润为元,则,然后利用二次函数的性质进行求解.
解:(1) ,
化简得,,
由题意知,,
解得,,
故的取值范围为且为整数;
(2)的取值范围为,
理由如下:,
当时,,
∴,,
∴或,
要使,由图象知,;
,
,且为整数;
(3)设捐款后每天的利润为元,
则,
对称轴为,
,
,
抛物线开口向下,当时,随的增大而增大,
当时,最大,
,
解得,.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D为边BC上一点,且AD=AB,AE⊥BC,垂足为点E.过点D作DF∥AB,交边AC于点F,连接EF,EF2=BDEC.
(1)求证:△EDF∽△EFC;
(2)如果,求证:AB=BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了多少名学生?
(2)“其它”在扇形图中所占的圆心角是多少度?
(3)补全频数分布折线图.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形的一条对角线将这个四边形分成两个三角形,如果这两个三角形相似(不全等),那么我们将这条对角线叫做这个四边形的相似对角线.
(1)如图1,四边形ABCD中,∠DAB=100°,∠DCB=130°,对角线AC平分∠DAB,求证:AC是四边形ABCD的相似对角线;
(2)如图2,直线分别与x,y轴相交于A,B两点,P为反比例函数y=(k<0)上的点,若AO是四边形ABOP的相似对角线,求反比例函数的解析式;
(3)如图3,AC是四边形ABCD的相似对角线,点C的坐标为(3,1),AC∥x轴,∠BCA=∠DCA=30°,连接BD,△BCD的面积为.过A,C两点的抛物线y=ax2+bx+c(a<0)与x轴交于E,F两点,记|m|=AC+1,若直线y=mx与抛物线恰好有3个交点,求实数a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,以为直径的交边于点(点不与点重合),交边于点,过点作,垂足为.
(1)求证:是的切线;
(2)若,.
①求的半径;
②连接交于点,则_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣kx+m与双曲线y=(x>0)交于A、B两点,点A的横坐标为1,点B的纵坐标为2,点P是y轴上一动点,当△PAB的周长最小时,点P的坐标是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C,D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.
(1)求证:EF是⊙O的切线.
(2)若∠CAO=30°,BC=2,求劣弧BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,、、三点的坐标分别为,,,点为线段上的一个动点,连接,过点作交轴于点,当点从运动到时,点随之运动,设点的坐标为,则的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王电子产品专柜以20元/副的价格批发了某新款耳机,在试销的60天内整理出了销售数据如下
销售数据(第x天) | 售价(元) | 日销售量(副) |
1≤x<35 | x+30 | 100﹣2x |
35≤x≤60 | 70 | 100﹣2x |
(1)若试销阶段每天的利润为W元,求出W与x的函数关系式;
(2)请问在试销阶段的哪一天销售利润W可以达到最大值?最大值为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com