分析 (1)利用顶点坐标(-$\frac{b}{2a}$,$\frac{4ac-{b}^{2}}{4a}$)或将解析式化成顶点式均可求出二次函数的顶点坐标,二次函数的与x轴的交点的纵坐标为0,故令-x2+2x+3=0即可求出其与x轴的交点坐标
(2)抛物线的开口与a值有关:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口,而当a<0时,在对称轴的右侧y随x的增大而减小;
解答 解:(1)原函数解析式可化为:y=-x2+2x+3=-(x-1)2+4,
则函数图象的顶点坐标为(1,4).
当y=0时,有-x2+2x+3=0,
解得:x1=-1,32=3
所以,图形与x轴的交点为:(-1,0),(3,0).
(2)∵函数图象开口向下,又其对称轴y=-$\frac{2}{2×(-1)}$=1
∴当x≥1时,y随x的增大而减小;
点评 本题考查了抛物线顶点坐标、与x轴的交点及其y随x的变化规律,关键是要记清抛物线的顶点坐标与a、b、c的关系,函数与x轴的交点的特点及其抛物线图象的特点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y1<y2 | B. | y1≥y2 | C. | y1>y2 | D. | y1≤y2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0.782×108 | B. | 7.82×107 | C. | 7.82×106 | D. | 78.2×105 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (-1,2) | B. | (2,-1) | C. | (-2,1) | D. | (1,-2) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 接受这次调查的家长人数为180人 | |
B. | 在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为135° | |
C. | 表示“无所谓”的家长人数为60人 | |
D. | 表示“很赞同”的家长人数为20人 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com