精英家教网 > 初中数学 > 题目详情
如图,直线y=-x+2与x轴交于点C,与y轴交于点B,点A为y轴正半轴上的一点,⊙A经过点B,O,直线BC交⊙A于点D.
(1)求点D的坐标.
(2)以OC为直径作⊙O',连接AD,直线AD与⊙O'相切吗?为什么?
(3)过O,C,D三点作抛物线,在抛物线的对称轴上是否存在一点P,使线段PO与PD之差的值最大?若存在,请求出这个最大值和点P的坐标,若不存在,请说明理由.

【答案】分析:(1)根据题意可求得点B,C的坐标,因为OB是直径,所以可求得∠BDO是直角,所以由三角函数可求得∠OBC等于30°,所以可求得OD的长,根据三角函数可求得点D的坐标;
(2)根据题意,有等量代换求得∠ADO′=90°,即可说明AD是⊙O'切线;
(3)首先要验证此点的存在性,再根据三角形的相似性求解即可.
解答:解:(1)由题意知B(0,2),C(,0),
tan∠OBC=
∴∠OBC=30°,
∴BD=BOcos30°=
过D作DE⊥y轴,垂足为E,DE=BD•sin30°=,EO=DEtan30°=
∴D(

(2)相切.
连接O'D.
由题意知O'D=OO',
∴∠O'OD=∠O'DO,
又∵∠AOD=∠ADO.
∴∠ADO'=∠ADO+∠O'DO=∠AOD+∠O'OD=∠AOO'=90°,
∴AD是⊙O'的切线.

(3)存在.
点P是直线BC与对称轴的交点,
设P'是对称轴上不同于点P的任一点,PO-PD=PC-PD=CD,P'O-P'D=P'C-P'D.
在△P'CD中,显然有P'C-P'D<CD.
所以,存在点P,使PO与PD之差的值最大.
且点P是直线BC与对称轴的交点.
由CO2=CD•CB,得CD=
根据抛物线的对称性知对称轴方程为
所以点P纵坐标为
∴P(,1).
点评:此题考查了二次函数与园的综合应用,解题时要注意分析二次函数与圆的性质,要注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线:y1=kx+b与抛物线:y2=x2+bx+c交于点A(-2,4),B(8,2).精英家教网
(1)求出直线解析式;
(2)求出使y1>y2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=59°,则∠AED的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数y=
4
x
(x>0)
图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=(  )
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,直线a∥c,b∥c,直线d与直线a、b、c相交,已知∠1=60°,求∠2、∠3的度数(可在图中用数字表示角).

查看答案和解析>>

同步练习册答案