精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD为直角梯形,AD‖BC,∠A=90°,AD=6,BC=10.动点P、Q分别从A、C两点同时出发,点P以每秒1个单位的速度由A向D运动,点Q以每秒2个单位的速度由C向B运动,当点Q停止运动时,点P也停止运动,设运动时间为t(0≤t≤5),
(1)当t为多少时,四边形PQCD是平行四边形?
(2)当t为多少时,四边形PQCD是等腰梯形?
根据题意得:PA=t,CQ=2t,则PD=AD-PA=6-t.
(1)∵ADBC,
即PDCQ,
∴当PD=CQ时,四边形PQCD为平行四边形,
即6-t=2t,
解得:t=2,
即当t=2秒时,四边形PQCD为平行四边形;

(2)过D作DE⊥BC于E,则四边形ABED为矩形,
∴BE=AD=6,
∴EC=BC-BE=4,
当PQ=CD时,四边形PQCD为等腰梯形,如图.
过点P作PF⊥BC于点F,则四边形PDEF是矩形,
∴EF=PD,PF=DE,
在Rt△PQF和Rt△CDE中,
PQ=DC
PF=DE

∴Rt△PQF≌Rt△DCE(HL),
∴QF=CE,
∴QC-PD=QC-EF=QF+EC=2CE,
即2t-(6-t)=8,
解得:t=
14
3

即当t=
14
3
秒时,四边形PQCD为等腰梯形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在等腰梯形ABCD中,ABCD,对角线AC⊥BD于P点,点A在y轴上,点C、D在x轴上.
(1)若BC=10,A(0,8),求点D的坐标;
(2)若BC=13
2
,AB+CD=34,求过B点的反比例函数的解析式;
(3)如图,在PD上有一点Q,连接CQ,过P作PE⊥CQ交CQ于S,交DC于E,在DC上取EF=DE,过F作FH⊥CQ交CQ于T,交PC于H,当Q在PD上运动时,(不与P、D重合),
PQ
PH
的值是否发生变化?若变化,求出变化范围;若不变,求出其值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

等腰梯形的上、下底长分别为2、4,腰长为2,则它的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,ADBC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.
(1)当运动时间t为多少秒时,PQCD.
(2)当运动时间t为多少秒时,以点P,Q,E,D为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,ADBC,∠B=90°,AD=18cm,BC=24cm,动点P从A开始沿AD向D以1cm/s的速度运动;动点Q从点C开始向B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.
(1)当t为何值时,四边形PQCD是平行四边形;
(2)当t为何值时,四边形PQCD是直角梯形;
(3)当t为何值时,四边形PQCD是等腰梯形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知直角梯形的一腰长为20cm,这腰和底所成的角为30°,那么另一腰长是(  )
A.15cmB.20cmC.10cmD.5cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在等腰梯形ABCD中,ABCD,AD=BC,点E,F分别在AD,BC上,且DE=CF.
试说明:AF=BE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在等腰梯形ABCD中,已知ADBC,AB=CD,AE⊥BC于E,∠B=60°,∠DAC=45°,AC=
6
,求梯形ABCD的周长?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

梯形ABCD中,ADBC,腰AB、CD的中点连线EF=5,且AD=3,则BC=______.

查看答案和解析>>

同步练习册答案