解:(1)∵△ABC是等边三角形,
∴AB=BC,∠ABE=∠BCD=60°.
∵BE=CD,
∴△ABE≌△BCD.
∴∠BAE=∠CBD.
∴∠APD=∠ABP+∠BAE=∠ABP+∠CBD=∠ABE=60°.
(2)同理可证:△ABE≌△BCD,
∴∠AEB+∠DBC=180°-90°=90°,
∴∠APD=∠BPE=180°-90°=90°;
△ABE≌△BCD,
∴∠AEB+∠DBC=180°-108°=72°,
∴∠APD=∠BPE=180°-72°=108°.
(3)能.如图,点E、D分别是正n边形ABCM中以C点为顶点的相邻两边上的点,
且BE=CD,BD与AE交于点P,则∠APD的度数为
.
分析:(1)由观察图形可以看出∠APD是△APB的一个外角,∠APD=∠BAE+∠ABD.又可得出△ABE≌△BCD,由此便可求出∠APD的度数,∠APD=∠ABP+∠BAE=∠ABP+∠CBD=∠ABE=60°.
(2)∠APD易证等于∠M,即等于多边形的内角.
(3)点E、D分别是正n边形ABCM中以C点为顶点的相邻两边上的点,且BE=CD,BD与AE交于点P,∠APD等于正n边形的内角,就可以求出.
点评:此题主要考查三角形全等的判定的应用,三角形外角的性质等知识,本题有一定的难度,特别是最后一问,要注意思考.