【题目】如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.
(1)∠1与∠B有什么关系?说明理由.
(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.
【答案】(1)∠1与∠B相等,理由见解析;(2)若BC=BD,AB与FB相等,理由见解析
【解析】
(1)∠ACB=90°,∠1+∠F=90°,又由于DF⊥AB,∠B+∠F=90°,继而可得出∠1=∠B;
(2)通过判定△ABC≌△FBD(AAS),可得出AB=FB.
解:(1)∠1与∠B相等,
理由:∵,△ABC中,∠ACB=90°,
∴∠1+∠F=90°,
∵FD⊥AB,
∴∠B+∠F=90°,
∴∠1=∠B;
(2)若BC=BD,AB与FB相等,
理由:∵△ABC中,∠ACB=90°,DF⊥AB,
∴∠ACB=∠FDB=90°,
在△ACB和△FDB中,
,
∴△ACB≌△FDB(AAS),
∴AB=FB.
科目:初中数学 来源: 题型:
【题目】如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.
(1)求B、C两点的坐标;
(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;
(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中有正方形AOBC,O为坐标原点,点A、B分别在y轴、x轴正半轴上,点P、E、F分别为边BC、AC、OB上的点,EF⊥OP于M.
(1)如图1,若点E与点A重合,点A坐标为(0,8),OF=3,求P点坐标;
(2)如图2,若点E与点A重合,且P为边BC的中点,求证:CM=2CP;
(3)如图3,若点M为线段OP的中点,连接AB交EF于点N,连接NP,试探究线段OP与NP的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于( )
A. 25° B. 30° C. 35° D. 40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是小明的爸爸骑一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分)的变化而变化的情况:
(1)图象表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)小明的爸爸从出发到最后停止共经过了多少分钟?离家最远的距离是多少千米?
(3)摩托车在哪一段时间内速度最快?最快速度是多少千米/小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为24的等边三角形,△CDE是等腰三角形,其中DC=DE=10,∠CDE=120°,点E在BC边上,点F是BE的中点,连接AD、DF、AF,则AF的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com