精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,∠BAC=90°AB=AC, DABC内一点,∠DAC=DCA=15°,则∠BDA=______.

【答案】75°

【解析】

AD为边,在△ADB中作等边三角形ADE,连接BE.可证得△EAB≌△DAC,再证△BEA≌△BED,得到BA=BD,利用等边对等角即可得结论.

如图,以AD为边,在△ADB中作等边三角形ADE,连接BE.

∵∠BAE=90°-60°-15°=15°

∠BAE=∠CAD=15°

在△EAB和△DAC中,

∴△EAB△DAC(SAS)

∴∠BEA=∠CDA=180°-15°-15°=150°

∴∠BED=360°-BEA-60°=150°,即∠BEA=∠BED

在△BEA和△BED中,

∴△BEA△BED(SAS)

∴BA=BD.

∴∠BDA=BAD=90°-DAC=75°

故答案为:75°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y1=x2-2x-3x轴相交于点A,B(AB的左侧),与y轴相交于点C,直线y2=kx+b经过点B,C.

(1)求直线BC的函数关系式;

(2)当y1>y2时,请直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中,詹姆斯在探究筝形的性质时,得到如下结论:
四边形ABCD的面积其中正确的结论有  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:

(1)本次参与调查的人数有 人;

(2)关注城市医疗信息的有 人,并补全条形统计图;

(3)扇形统计图中,D部分的圆心角是 度;

(4)说一条你从统计图中获取的信息.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是等边ABC内部一点,∠APBBPCCPA的大小之比是567,则以PAPBPC为边的三角形的三个内角的大小之比是(从小到大)(

A.234B.456C.345D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O的半径为2,弦BC的长为A为弦BC所对优弧上任意一点(BC两点除外).

1)求BAC的度数;

2)求ABC面积的最大值.

(参考数据:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,A(-a,0),B(b,0),C(0,c),且满足.

(1)如图1,过BBDAC,y轴于M,垂足为D,求M点的坐标.

(2)如图2,若a=3AC=6,点P为线段AC上一点,Dx轴负半轴上一点,且PD=PO,∠DPO=45°,求点D的坐标.

(3)如图3MOC上,EAC上,满足∠CME=OMA,EFAMAOG,垂足为F,试猜想线段OG,OM,CM三者之间的数量关系,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解下列方程.

(1)x2﹣x﹣1=0;

(2)x2﹣2x=2x+1;

(3)x(x﹣2)﹣3x2=﹣1;

(4)(x+3)2=(1﹣2x)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD为矩形的四个顶点,AB=16 cm,AD=6 cm,动点PQ分别从点AC同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动,当点P停止运动时,点Q也停止运动.问:

(1)PQ两点从开始出发多长时间时,四边形PBCQ的面积是33 cm2?

(2)PQ两点从开始出发多长时间时,点P与点Q之间的距离是10 cm?

查看答案和解析>>

同步练习册答案