【题目】如图,△ABC中,∠BAC=90°,AB=AC, D是△ABC内一点,∠DAC=∠DCA=15°,则∠BDA=______.
【答案】75°
【解析】
以AD为边,在△ADB中作等边三角形ADE,连接BE.可证得△EAB≌△DAC,再证△BEA≌△BED,得到BA=BD,利用等边对等角即可得结论.
如图,以AD为边,在△ADB中作等边三角形ADE,连接BE.
∵∠BAE=90°-60°-15°=15°,
∴∠BAE=∠CAD=15°,
在△EAB和△DAC中,
∴△EAB≌△DAC(SAS),
∴∠BEA=∠CDA=180°-15°-15°=150°,
∴∠BED=360°-∠BEA-60°=150°,即∠BEA=∠BED;
在△BEA和△BED中,
∴△BEA≌△BED(SAS),
∴BA=BD.
∴∠BDA=∠BAD=90°-∠DAC=75°
故答案为:75°.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相交于点C,直线y2=kx+b经过点B,C.
(1)求直线BC的函数关系式;
(2)当y1>y2时,请直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中,,詹姆斯在探究筝形的性质时,得到如下结论:
;;≌;四边形ABCD的面积其中正确的结论有
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:
(1)本次参与调查的人数有 人;
(2)关注城市医疗信息的有 人,并补全条形统计图;
(3)扇形统计图中,D部分的圆心角是 度;
(4)说一条你从统计图中获取的信息.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是等边△ABC内部一点,∠APB,∠BPC,∠CPA的大小之比是5:6:7,则以PA、PB、PC为边的三角形的三个内角的大小之比是(从小到大)( )
A.2:3:4B.4:5:6C.3:4:5D.不确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的半径为2,弦BC的长为,点A为弦BC所对优弧上任意一点(B,C两点除外).
(1)求∠BAC的度数;
(2)求△ABC面积的最大值.
(参考数据: ,,.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,A(-a,0),B(b,0),C(0,c),且满足.
(1)如图1,过B作BD⊥AC,交y轴于M,垂足为D,求M点的坐标.
(2)如图2,若a=3,AC=6,点P为线段AC上一点,D为x轴负半轴上一点,且PD=PO,∠DPO=45°,求点D的坐标.
(3)如图3,M在OC上,E在AC上,满足∠CME=∠OMA,EF⊥AM交AO于G,垂足为F,试猜想线段OG,OM,CM三者之间的数量关系,并给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用适当的方法解下列方程.
(1)x2﹣x﹣1=0;
(2)x2﹣2x=2x+1;
(3)x(x﹣2)﹣3x2=﹣1;
(4)(x+3)2=(1﹣2x)2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动,当点P停止运动时,点Q也停止运动.问:
(1)P,Q两点从开始出发多长时间时,四边形PBCQ的面积是33 cm2?
(2)P,Q两点从开始出发多长时间时,点P与点Q之间的距离是10 cm?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com