【题目】如图,直线l1:y1=2x+1与坐标轴交于A,C两点,直线l2: y2=-x-2与坐标轴交于B,D两点,两直线交于P点.
(1)求P点的坐标;
(2)求△APB的面积.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,4).
(1)求此抛物线的解析式;
(2)设点P(2,n)在此抛物线上,AP交y轴于点E,连接BE,BP,请判断△BEP的形状,并说明理由;
(3)设抛物线的对称轴交x轴于点D,在线段BC上是否存在点Q,使得△DBQ成为等腰直角三角形?若存在,求出点Q的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线 y=2x+4 与 x 轴相交于点 A,与 y 轴相交于点 B.
(1)求 A,B 两点的坐标;
(2)过 B 点作直线 BP 与 x 轴相交于 P,且使 OP=2OA,求直线 BP 的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,AB=3,BC=4.点P在线段AB或线段AD上,点Q中线段BC上,沿直线PQ将矩形折叠,点B的对应点是点E.
(1)如图1,点P、点E在线段AD上,点Q在线段BC上,连接BP、EQ.
①求证:四边形PBQE是菱形.
②四边形PBQE是菱形时,AP的取值范围是 .
(2)如图2,点P在线段AB上,点Q在线段AD上,点E在线段AD上,若AE=,求折痕PQ的长.
(3)点P在线段AB,AP=2,点Q在线段BC上,连AE、CE.请直接写出四边形AECD的面积的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,若动点从点开始,按的路径运动,且速度为每秒,设出发的时间为秒.
(1)当为几秒时,平分;
(2)问为何值时,为等腰三角形?
(3)另有一点,从点开始,按的路径运动,且速度为每秒,若两点同时出发,当中有一点到达终点时,另一点也停止运动. 当为何值时,直线把的周长分成相等的两部分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线L1:y=﹣x2+bx+c经过点A(1,0)和点B(5,0)已知直线l的解析式为y=kx﹣5.
(1)求抛物线L1的解析式、对称轴和顶点坐标.
(2)若直线l将线段AB分成1:3两部分,求k的值;
(3)当k=2时,直线与抛物线交于M、N两点,点P是抛物线位于直线上方的一点,当△PMN面积最大时,求P点坐标,并求面积的最大值.
(4)将抛物线L1在x轴上方的部分沿x轴折叠到x轴下方,将这部分图象与原抛物线剩余的部分组成的新图象记为L2
①直接写出y随x的增大而增大时x的取值范围;
②直接写出直线l与图象L2有四个交点时k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=﹣x2+bx+c的图象如图所示,下列几个结论:
①对称轴为x=2;②当y≤0时,x<0或x>4;③函数解析式为y=﹣x(x+4);④当x≤0时,y随x的增大而增大.其中正确的结论有_____
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com