【题目】如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动,当点P停止运动时,点Q也停止运动.问:
(1)P,Q两点从开始出发多长时间时,四边形PBCQ的面积是33 cm2?
(2)P,Q两点从开始出发多长时间时,点P与点Q之间的距离是10 cm?
【答案】(1) P,Q两点从开始出发5s时,四边形PBCQ的面积是33cm2;(2) P,Q两点从开始出发1.6s或4.8s时,点P与点Q之间的距离是10cm.
【解析】试题分析:(1)、首先设xs时面积为33,然后根据梯形的面积计算法则列出方程,从而求出答案;(2)、过点Q作QH⊥AB于H,然后求出PH的长度,最后根据Rt△PHQ的勾股定理求出未知数的值得出答案.
试题解析:解:(1)设P,Q两点从开始出发xs时,四边形PBCQ的面积是33cm2.
则由题意得×(16-3x+2x)×6=33,
解得x=5.(3分)∵16÷3=>5,
∴x=5符合题意.
故P,Q两点从开始出发5s时,四边形PBCQ的面积是33cm2;
(2)设P,Q两点从开始出发ys时,点P与Q之间的距离是10cm,
过点Q作QH⊥AB于H,
∴∠QHA=90°.∵四边形ABCD是矩形,∴∠A=∠D=90°,
∴四边形ADQH是矩形,∴AH=DQ=(16-2y)cm,QH=AD=6cm,
∴当P点在H点上方时,PH=AH-AP=16-2y-3y=(16-5y)(cm);当P点在H点下方时,PH=AP-AH=3y-(16-2y)=(5y-16)(cm), ∴PH=|16-5y|cm.
在Rt△PQH中,根据勾股定理得PH2+QH2=PQ2,
即(16-5y)2+62=102,解得y1=1.6,y2=4.8. ∵16÷3=,
∴y1=1.6和y2=4.8均符合题意.
故P,Q两点从开始出发1.6s或4.8s时,点P与点Q之间的距离是10cm.
科目:初中数学 来源: 题型:
【题目】端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A和C的总数不超过200盒,礼盒B和C的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A、B、C三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为_____元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了丰富学生的课余生活,准备从体育用品商店一次性购买若干个排球和篮球,若购买2个排球和1个篮球共需190元.购买3个排球和2个篮球共需330元.
(1)购买一个排球、一个篮球各需多少元?
(2)根据该校的实际情况,需从体育用品商店一次性购买排球和篮球共100个,要求购买排球和篮球的总费用不超过6500元,这所中学最多可以购买多少个篮球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A点的坐标为(0,3),B点的坐标为(-3.0),D为x轴上的一个动点,AE⊥AD,且AE=AD,连接BE交y轴于点M
(1)若D点的坐标为(-5.0),求E点的坐标:
(2)求证:M为BE的中点
(3)当D点在x轴上运动时,探索:为定值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.
(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);
①求此抛物线的表达式与点D的坐标;
②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;
(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用适当的方法解下列方程:
(1)(6x-1)2=25;
(2)x2-2x=2x-1;
(3)x2-x=2;
(4)x(x-7)=8(7-x).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为落实立德树人根本任务,培养德智体美劳全面发展的社会主义接班人,育才学校在设立学生奖学金时规定:每学期对学生的德智体美劳五个方面进行三次综合素质评价,分别是:假期综合素质评价、期中综合素质评价、期末综合素质评价,八年级(1)班的小明和八年级(2)班的小亮两位同学同时进入一等奖学金测评,他们的三次综合素质评价成绩如下表.
假期综合素质评价成绩 | 期中综合素质评价成绩 | 期末综合素质评价成绩 | |
小明 | 96 | 91 | 92 |
小亮 | 95 | 93 | 91 |
(1)如果从三次综合素质评价成绩稳定性的角度来看,谁可以得一等奖学金?请你通过计算回答;
(2)如果假期综合素质评价成绩、期中综合素质评价成绩、期末综合素质评价成绩按的比例计入最终成绩,谁可以得一等奖学金?请你通过计算回答.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB、CD相交于点O,若BE平分∠ABD交CD于F,CE平分∠ACD交AB于G,∠A=45°,∠BEC=40°,则∠D的度数为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在今年年初,新型冠状病毒在武汉等地区肆虐,为了缓解湖北地区的疫情,全国各地的医疗队员都纷纷报名支援湖北,某方舱医院需要8组医护人员支援,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人,若每组人数比预定人数少分配一人,则总数不够90人,那么预定每组分配的人数是多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com