【题目】下列结论:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②三边分别为的三角形是直角三角形;③大于-而小于的所有整数的和为-4 ;④若一个直角三角形的两边长分别为3和4,则第三边长是5;其中正确的结论是______________(填序号);
科目:初中数学 来源: 题型:
【题目】根据道路管理规定,在贺州某段笔直公路上行驶的车辆,限速千米/时,已知交警测速点到该公路点的距离为米,,(如图所示),现有一辆汽车由往方向匀速行驶,测得此车从点行驶到点所用的时间为秒.
求测速点到该公路的距离;
通过计算判断此车是否超速.(参考数据:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.
(1)求每部A型手机和B型手机的销售利润分别为多少元?
(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.
①求y关于n的函数关系式;
②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=mx+2m+3的图像与y=-x的图像交于点C,且点C的横坐标为-3,与x轴、y轴分别交于点A、点B.
(1)求m的值与AB的长;
(2)若点D(9,0),连结BD,求证△ABD为直角三角形.
(3)在y轴上是否存在点P,使得△ABP为等腰三角形,若存在请求出P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(-2,0),其中a、b满足, DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.
⑴ 分别求出点A、B的坐标;
⑵ 求证:△AOB≌△BDE,并求出点E的坐标
⑶ 若以AB为腰在第一象限内构造等腰直角△ABF,直接写出点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,无论k取何实数,直线y=(k-1)x+4-5k总经过定点P,则点P与动点Q(5m-1,5m+1)的距离的最小值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为1个单位,运动时间为t秒.过点P作PE⊥AO交AB于点E.
(1)求直线AB的解析式;
(2)设△PEQ的面积为S,求S与t时间的函数关系,并指出自变量t的取值范围;
(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,已知AB=AC,D是AC上的一点,CD=9,BC=15,BD=12.
(1)证明:△BCD是直角三角形.
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读)
如图1,四边形OABC中,OA=a,OC=8,BC=6,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].
(理解)
若点D与点A重合,则这个操作过程为FZ[45°,8];
(尝试)
(1)若点D与OA的中点重合,则这个操作过程为FZ[____,____];
(2)若点D恰为AB的中点(如图2),求θ的值;
(应用)
经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l与AB相交于点F,试画出图形并解决下列问题:
①求出a的值;
②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.
(备注:等腰直角三角形的三边关系满足或)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com