精英家教网 > 初中数学 > 题目详情

【题目】下列结论:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②三边分别为的三角形是直角三角形;③大于-而小于的所有整数的和为-4 ;④若一个直角三角形的两边长分别为34,则第三边长是5;其中正确的结论是______________(填序号);

【答案】①③

【解析】

①根据等腰三角形的性质即可得到结论;②根据勾股定理的逆定理即可得到结论;③估算无理数的大小即可得到结论;④根据勾股定理即可得到结论.

解:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形,正确;

,∴三边分别为的三角形不是直角三角形,错误;

③大于-而小于的所有整数有:-4-3-2-10123,它们的和为-4正确;

④当34为直角边时,第三边为5;当4位斜边时,第三边是,∴一个直角三角形的两边长分别为34,则第三边长是5错误;

故答案为①③.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】根据道路管理规定,在贺州某段笔直公路上行驶的车辆,限速千米/时,已知交警测速点到该公路点的距离为米,(如图所示),现有一辆汽车由方向匀速行驶,测得此车从点行驶到点所用的时间为秒.

求测速点到该公路的距离;

通过计算判断此车是否超速.(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.

(1)求每部A型手机和B型手机的销售利润分别为多少元?

(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.

①求y关于n的函数关系式;

②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?

(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ymx2m+3的图像与y=-x的图像交于点C,且点C的横坐标为-3,与x轴、y轴分别交于点A、点B

1)求m的值与AB的长;

2)若点D90),连结BD,求证△ABD为直角三角形.

3)在y轴上是否存在点P,使得△ABP为等腰三角形,若存在请求出P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A0b),点Ba0),点D(-20),其中ab满足DEx轴,且∠BED=∠ABO,直线AEx轴于点C.

⑴ 分别求出点AB的坐标;

⑵ 求证:△AOB≌△BDE,并求出点E的坐标

⑶ 若以AB为腰在第一象限内构造等腰直角△ABF,直接写出点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,无论k取何实数,直线y=(k-1)x+4-5k总经过定点P,则点P与动点Q(5m-1,5m+1)的距离的最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(24),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点PQ的运动速度均为1个单位,运动时间为t秒.过点PPEAOAB于点E

1)求直线AB的解析式;

2)设PEQ的面积为S,求St时间的函数关系,并指出自变量t的取值范围;

3)在动点PQ运动的过程中,点H是矩形AOBC内(包括边界)一点,且以BQEH为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,已知AB=AC,DAC上的一点,CD=9,BC=15,BD=12.

(1)证明:BCD是直角三角形.

(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读)

如图1,四边形OABC中,OAaOC8BC6,AOC=∠BCO90°,经过点O的直线l将四边形分成两部分,直线lOC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θa]

(理解)

若点D与点A重合,则这个操作过程为FZ[45°8]

(尝试)

1)若点DOA的中点重合,则这个操作过程为FZ[________]

2)若点D恰为AB的中点(如图2),求θ的值;

(应用)

经过FZ[45°a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线lAB相交于点F,试画出图形并解决下列问题:

①求出a的值;

②若P为边OA上一动点,连接PEPF,请直接写出PEPF的最小值.

(备注:等腰直角三角形的三边关系满足)

查看答案和解析>>

同步练习册答案