分析 证明△AEF∽△CEB,且相似比为1:2,得到EC=2AE,BE=2EF,即AC=3AE,BF=3EF,在三角形ABC和三角形ABF中,分别利用勾股定理得到AC2=AB2+BC2,BF2=AF2+AB2,将各自的值代入,两等式左右两边分别相加,得到9(AE2+FE2)=2x2+20,又在直角三角形ABE中,利用勾股定理得到AE2+FE2=AF2=22=4,列出关于x的方程,求出方程的解即可.
解答 解:∵点F为AD中点,四边形ABCD是矩形,
∴AF=$\frac{1}{2}$AD=2,AD=BC=4,
∵矩形ABCD中,AD∥BC,
∴∠EAF=∠ECB,∠AFE=∠CBE,
∴△AEF∽△CEB,
∴$\frac{AE}{CE}=\frac{FE}{BE}$=$\frac{AF}{CB}$=$\frac{2}{4}$=$\frac{1}{2}$,
∴CE=2AE,BE=2FE,
∴AC=3AE,BF=3FE,
∵矩形ABCD中,∠ABC=∠BAF=90°,
∴在Rt△ABC和Rt△BAF中,AB=x,
分别由勾股定理得:AC2=AB2+BC2,BF2=AF2+AB2,即(3AE)2=x2+42,(3FE)2=22+x2,
两式相加,得9(AE2+FE2)=2x2+20,
又∵AC⊥BG,
∴在Rt△AEF中,根据勾股定理得:AE2+FE2=AF2=4,
∴36=2x2+20,
解得:x=2$\sqrt{2}$或x=-2$\sqrt{2}$(舍去),
∴x=2$\sqrt{2}$,即AB=2$\sqrt{2}$;
故答案为:2$\sqrt{2}$.
点评 此题考查了相似三角形的判定与性质、矩形的性质以及勾股定理;掌握矩形的性质和三角形相似的判定与性质是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 正三角形 | B. | 正方形 | C. | 正五边形 | D. | 正六边形 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (2,3) | B. | (-2,3) | C. | (2,-3) | D. | (2,-3)或(-2,-3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com